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Neural Networks on CUDA
Part I: Introduction, grading, and tutorial

In this project, you will implement a neural network using CUDA to identify digits from hand-
written images (a specific case of image classification problem). Neural networks are widely used
in machine learning problems, specifically in the domains of image processing, computer vision and
natural language processing. Recently, there has been a lot of excitement regarding deep learning,
which basically uses more advanced variants of the simpler neural network (NN) we cover here.
Therefore, being able to train large neural networks efficiently is important and is the goal of this
project.

The main purpose of this Part I is to introduce you to the project and give you a picture of
what needs to be done. Details of the starter code, submission instructions and full details of the
grading steps will be handed out in Part II.

Make sure to check the slides and videos on the class webpage.

1 Schedule and Grading

Date Percent Description

Friday May 28th 20% Preliminary Report
Sunday June 6th 80% Final Report

Late days: For the preliminary report, the usual late submission penalty will apply. For the final
report, since the submission deadline is close to the grading deadline, there will be no late days.
So please make sure you submit your work on time.

Preliminary Report: The preliminary report consists of a written report of 1–2 pages, along
with MPI + CUDA computer code. The grading basis for the preliminary report is as follows:

• Correctness (15%): We expect a correct, fully working MPI+CUDA parallel code. However
you do not need to optimize your code. Submit the simplest code that will give the correct
result. The details about how we determine correctness are provided in Part II.

• Profiling (5%): Perform a profiling of your unoptimized code. Identify major bottlenecks in
your code and make suggestions for what you think is causing these bottlenecks and how you
would try to alleviate them. You do not need to write computer code for any optimization.
We will not test your code for performance.

Final Report: For the final report, you will have to turn in a 4-page report and a fully working
and optimized code. Your grade will be determined as follows:

• Correctness (32%): This is for correctness of your optimized code. The details about how
we determine correctness are provided in Part II.
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• Correctness analysis (3%): In addition to the code, in the report, discuss the correctness
of your code. Does the GPU code give the same results as the CPU code? How large is the
difference? How does this difference depend on the parameters of your calculation? How can
you explain this difference?

• Performance (20%): This grade will be based on the performance of your code for a number
of specific benchmarks. See Part II.

• Profiling and analysis (20%): the results are presented in the final report. Your tasks
include:

– Perform a detailed profiling of your optimized code. Include plots, charts, and data
visualization from your profiling. Discuss the performance of your code before and after
optimizations. What are the key bottlenecks? What is slowing down your code? How
does the performance of your code depend on various parameters, like input data size,
and number of neurons?

– Explain the steps you have taken to improve performance. What bottleneck in the
hardware was addressed by your algorithmic changes? Can you explain the impact of
the changes you made in the code?

• Overall quality of report (5%): this criterion will evaluate the quality of the report, the
clarity and correctness of the explanations, the organization and presentation, the complete-
ness of the explanations, and the overall quality of the project.

• Bonus assignment (+ 15 points): There is an extra credit part to the project worth 15
points. This is described in Section 4.3. If you decide to do the bonus assignment, use an
extra half page to describe your approach and findings. The final report will then be 4 1⁄2

pages.

2 Data and Notation
We will be using the MNIST [1] dataset, which consists of greyscale 28 × 28 pixel images of
handwritten digits from 0 to 9. Some examples of this dataset are shown in Figure 1.

Figure 1: Examples of MNIST digits

The dataset is divided into two parts: 60,000 training data and 10,000 test data. We will use
the training data to learn the parameters of our neural network (described later), and the test data
to measure the performance of the learned network on an unseen dataset.

In the training process, one issue is overfitting on the training data. To avoid this, a common
practice is to perform a cross-validation—a technique to measure how the model will generalize on
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an unseen dataset. Cross-validation is carried out by further dividing the training data into two
sets, a training set and a validation set. The validation set is a small portion (usually 10%) of the
training dataset. We then perform the training on the training set (excluding the validation set)
and evaluate our model on the validation set.

We denote the ith image sample in the training set as (x(i), y(i)), where x(i) denotes the image
and y(i) denotes the class label, which is the digit shown in the image.

3 Neural Networks
3.1 Neurons
To describe neural networks, we will begin by describing the simplest neural network, one which
comprises a single “neuron.” Figure 2 illustrates a single neuron.

x1

x2

x3

hW,b(x)

Figure 2: Single Neuron

This “neuron” is a computational unit that takes as input (x1, x2, x3), and outputs

hW,b(x) = f(Wx+ b) = f
( 3∑

i=1

Wixi + b
)

where f : R→ R is the activation function, W is the weights of the neuron, and b is the bias term.
(W, b) together form the parameters of this neuron.

For this project, we set f(·) to be the sigmoid function:

f(z) =
1

1 + exp(−z)

Other common activation functions include f(z) = tanh(z) and the rectified linear unit (ReLU),
f(z) = max(0, z). These are illustrated in Figure 3.

This is a good time for us to discuss the calculation of the derivative of the sigmoid function
with respect to its input, since we are going to use it significantly in the following sections.

f(x) = σ(x) =
1

1 + exp(−x)
∂σ(x)

∂x
= − 1

(1 + exp(−x))2
∂ exp(−x)

∂x
=

exp(−x)
(1 + exp(−x))2

= σ(x)(1− σ(x))

The neuron performs a linear transform on its input followed by a non-linear transformation (sig-
moid, in this case).

When a single neuron is used, we are limited to a binary classification. Take the example of
a cancer tumor. We may build a neural network that takes as input the size of the tumor, its
location, and the length of time it has been there. Based on these three pieces of information, the
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Figure 3: Examples of three activation functions: tanh(x), 1/(1 + exp(−x)) (sigmoid), and the
rectified linear unit (ReLU).

network needs to determine whether the tumor is benign or malignant. This is a true/false type of
determination. In our previous model using the sigmoid function, we can interpret the output of
the network as follows: if f(Wx+ b) > 0.5, we consider that the tumor is malignant, otherwise it
is benign.

If you think about it, the value of f(Wx+ b) depends on the sign of Wx+ b. What the network
is doing is that it is partitioning the space x using a d-dimensional hyperplane of the input space.
On one side of the hyperplane, f(Wx+ b) > 0.5, and on the other f(Wx+ b) < 0.5.

Our task is therefore to learn the parameters of the network W and b so that it achieves the
best accuracy or precision on the test dataset.

In the project we need to extend this concept to multiple classes. Instead of a simple true/false
output, we need to decide which digits from 0 to 9 is shown on the input image. This requires a
slightly more complex output.

3.2 Fully-connected feedforward neural network
Figure 4 shows a fully-connected feedforward neural network with 1 input layer, 1 hidden layer,
and 1 output layer. We call such a network a two-layer neural network (ignoring the input layer
as it is trivially present). Let us denote the input as x ∈ R1×d, the number of neurons in layer i as
Hi, and the parameters of layer i as (W (i), b(i)).

In our problem, we are trying to determine the digit associated with each image. We will
call this digit the “label” associated with the image (using deep learning terminology). The total
number of labels is denoted C. In our case C = 10, since we are trying to determine digits 0 to 9.

Recall that the parameters of a single neuron are W ∈ R1×d and b ∈ R, i.e., W is a vector of the
same dimensionality as the input and the bias is simply a scalar. Therefore, we can represent the
parameters of layer i of the neural network in matrix form as W (i) ∈ RHi×Hi−1 and b(i) ∈ RHi×1.
Similarly, if we had N input vectors, we denote the input collectively as X ∈ RN×d.

In Figure 4, d = 4, H1 = 5, H2 = 3, W (1) ∈ R5×4, b(1) ∈ R5×1, W (2) ∈ R3×5, b(2) ∈ R3×1.
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Figure 4: Fully Connected Feedforward Neural Network with 2 layers

The last layer is special. This is the output of our network. In the project, we have C = 10
output nodes. Each node represents a possible digit. We will see later on how the output vector ŷ
can be interpreted to determine the digit that is predicted by the network for an input image.

3.3 Feed-forward
The nice thing about neural networks is that they are highly modular. Layer Li does not need to
know whether its input is the input layer itself or the output of Li−1. Li computes its activations
as a(i) = f (i)(Wa(i−1) + b(i)), with a(0) = x, where f (i) is the non-linearity used by Li (sigmoid,
by default). Feed-forward is the process of computing the activations of all neurons in the network
layer-by-layer, from i = 1 to i = 2 in our case.

Let us perform the feed-forward for the network in Figure 4:

z(1) = W (1)x+ b(1)

a(1) = σ(z(1))

z(2) = W (2)a(1) + b(2)

ŷ = a(2) = softmax(z(2))

ŷ is the output of the network. Note that we have represented the linear transformation of the Li

by z(i). This will help us in the following sections. The softmax function is defined by:

softmax(z(2))j
def
= P (label = j|x) def

=
exp(z

(2)
j )

C∑
i=1

exp(z
(2)
i )

This equation is saying that the probability that the input has label j (i.e., in our case, the digit
j is handwritten in the input image) is given by softmax(z(2))j . Therefore, our predicted label for
the input x is given by:

label = argmax(ŷ)

This is basically the digit the network believes is written in the input image.
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3.4 Training
Recall that our objective is to learn the parameters of the neural network such that it gets the best
accuracy on a set of data points, which we call the dev set. Let y be the one-hot vector denoting
the class of the input, i.e., yc = 1 if c is the correct label, 0, otherwise. We want P (label = c|x) to
be the highest (e.g., close to 1).

Without going into the mathematical details, we will use the following general expression to
determine the error of our neural network. This expression turns out to be the most convenient for
our purpose:

CE(y, ŷ) = −
C−1∑
i=0

yi log (ŷi)

CE stands for cross-entropy. Since y is a one-hot vector, this simplifies to

CE(y, ŷ) = − log (ŷc)

We can observe that CE is 0 when we have the optimal answer, e.g., ŷc = 1. Similarly, CE is
maximal (+∞) when ŷc is 0. This corresponds to a neural network that is “sure” that the digit is
not c (maximally wrong).

The total cost for N input data points (such that the cross-entropy of the ith training vector is
denoted as CE(i)):

cost = J(W, b;x, y) =
1

N

N∑
i=1

CE(i)(y, ŷ)

The above cost measures the error or our “dissatisfaction” with the output of the network. The
more certain the network is about the correct label (high P (y = c|x)), the lower our cost will be.

Clearly, we should choose the parameters that minimize this cost. This is an optimization
problem, and may be solved using the method of Stochastic Gradient Descent (described below).

Our neural network applies a non-linear function to the input because of the sigmoid and
softmax functions. However, if we make W very small, the network becomes nearly linear because
Wx is itself very small. To optimize the neural network, we often add a penalization term for
the magnitude of W in order to control the non-linearity of the network. There is no rigorous
justification for this penalization. It is found to work well in practice and is easy to use. With the
penalization term, the cost function becomes

J(W, b;x, y) =
1

N

N∑
i=1

CE(i)(y, ŷ) + 0.5 λ ∥W∥22 (1)

where ∥W∥22 is the sum of the l2-norm of all the weights W of the network, and λ needs to be tuned
for best performance. In our implementation, only the weights W are penalized, not the biases b.

3.5 Gradient Descent
Gradient Descent is an iterative algorithm for finding local minima of a function. For our case,

p← p− α ∇pJ (2)

where α is the learning rate that controls how large the descent step is. ∇pJ is the gradient of J
with respect to the network parameters p.

6



CME 213 Final Project Spring 2021

In practice, we often do not compute J using all the input images: J =
N∑
i=1

CE(i), where N are

all the images. Instead, we subdivide the input into mini-batches containing M images. We process
one mini-batch at a time. For each mini-batch, we calculate a partial J , and update the network
coefficients. Then, process the next batch, until all images are processed. This algorithm is also
called Stochastic Gradient Descent. See Listing 5 for the pseudo-code. In the code, an epoch (in
the machine learning lingo) is an iteration over the entire data set of N images.

This approach usually leads to faster convergence because we update the network coefficients
more often and are able to learn faster.
epoch = 0
while epoch < MAX_EPOCHS:

batches = split(training_samples, M)
for batch in batches:
p = p - step * gradient(batch)

epoch += 1

Figure 5: Stochastic Gradient Descent with mini-batches

3.6 Backpropagation
Backpropagation is the process of updating the neural network coefficients. This involves computing
the gradient of the multi-variable loss function using the chain rule, to obtain ∇pJ .

Let’s compute the gradient for the parameters in the last layer (2) of our network:

∂CE(y, ŷ)
∂z

(2)
k

= −

∂ log

 exp(z
(2)
c )

C∑
i=0

exp(z
(2)
i )


∂z

(2)
k

= −
∂
[
z
(2)
c − log

( C∑
i=0

exp(z
(2)
i

)]
∂z

(2)
k

There are two cases here:

1. Case I: k = c = yi, i.e., k is the correct label

∂CE(y, ŷ)
∂z

(2)
k

= −1 +
exp(z

(2)
k )

C∑
i=0

exp(z
(2)
i )

= −1 + ŷk = ŷk − yk

2. Case II: k ̸= yi
∂CE(y, ŷ)

∂z
(2)
k

= 0 +
exp(z

(2)
k )

C∑
i=0

exp(z
(2)
i )

= ŷk − yk

Therefore, the gradient in vector notation simplifies to

∂CE(y, ŷ)
∂z(2)

= ŷ − y (3)
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Recall that z(2) = W (2)a(1) + b(2), such that z(2) ∈ RH2×1, a(1) ∈ RH1×1 and W (2) ∈ RH2×H1 .
Therefore,

∂CE(y, ŷ)
∂W (2)

=
∂CE(y, ŷ)

∂z(2)
∂z(2)

∂W (2)

∂CE(y, ŷ)
∂W (2)

= (ŷ − y)[a(1)]T (4)

Similarly,
∂CE(y, ŷ)

∂b(2)
= ŷ − y (5)

Going across L2:

∂z(2)

∂a(1)
= [W (2)]T

∂CE(y, ŷ)
∂a(1)

=
∂CE(y, ŷ)

∂z(2)
∂z(2)

∂a(1)
= [W (2)]T (ŷ − y)

Going across the non-linearity of L1:

∂CE(y, ŷ)
∂z(1)

=
∂CE(y, ŷ)

∂a(1)
∂σ(z(1))

∂z(1)

=
∂CE(y, ŷ)

∂a(1)
◦ σ(z(1)) ◦ (1− σ(z(1)))

Note that we have assumed that σ(·) works on vectors (matrices) by applying an element-wise
sigmoid, and ◦ is the element-wise (Hadamard) product.

That brings us to our final gradients:

∂CE(y, ŷ)
∂W (1)

=
∂CE(y, ŷ)

∂z(1)
∂z(1)

∂W (1)

∂CE(y, ŷ)
∂W (1)

=
(∂CE(y, ŷ)

∂z(1)

)
xT (6)

Similarly,
∂CE(y, ŷ)

∂b(1)
=

∂CE(y, ŷ)
∂z(1)

(7)

The above equations have been derived for a single training vector, but they extend seamlessly to
a matrix of N column vectors. You just need to sum up over all the input images x.

4 Your Tasks
You task is to implement a parallel training process for our two layer neural network utilizing both
CUDA and MPI. You should focus on parallelizing each iteration that processes a batch of images.
The work should be parallelized among a certain number of MPI nodes (e.g., 4 MPI nodes), and the
computation on each node should be accelerated by GPU kernels. You’ll need to carefully analyze
the neural network training algorithm, the overhead of the MPI and CPU-GPU communication
and decide the granularity of parallelism. For example, you may choose to fork (distribute data
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among MPI nodes) and join (collect, reduce on one MPI node) on every matrix operation, or fork
at the beginning, keep intermediate results local at each node and join at the end, or a combination
of both.

Expected optimizations include:

• GPU accelerated matrix operation: The training process contains GEMM (General
Matrix-matrix Multiplication) and element-wise matrix operations, which should be accel-
erated using the GPU. The key to optimizing the GPU kernels includes a wise choice of
blockSize and gridSize, memory coalescing, and usage of shared memory.

• Communication overhead: Both MPI and GPU computation introduce communication
overheads. While some of the communication are required, some can be avoided.

4.1 Outline of parallelization strategies for CUDA and MPI
• GEMM CUDA implementation: A GEMM operation can be expressed as D = α ∗ A ∗

B + β ∗ C:
dij = α

∑
k

aikbkj + βcij (8)

Some BLAS libraries perform in-place computation that saves the result D in the memory
space of C, as cuBLAS does. This is possible if C is no longer needed after the computation.
Please read the “CUDA C Programming Guide” written by NVIDIA (p. 28):
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

We first outline the basic implementation (“Algorithm 1”). The simplest implementation is
to have one thread calculate a single element in the result D. Each thread reads the required
row of A, column of B, and an element of C to compute the output element in D. This is
equivalent to having each thread calculates the entire sum of k for a given (i, j) in Equation 8.
This is equivalent to Figure 7 on p. 29 (CUDA PG, PG-02829-001_v11.3).
You are free to refer to online documentation and code for your project. However, all the
work you are submitting must be entirely your own. You are not allowed to copy
code written by someone else.
For Algorithm 2, you need to use shared memory and propose a better implementation. For
example, use a blocking algorithm and take advantage of the shared memory. One approach
is to have each thread block (e.g., a block of 32×32 threads) compute a sub-matrix (of size
32×32) in the output matrix. Blocks from matrices A and B can be loaded into shared
memory, with each thread reading one element of each sub-matrix. Each thread then updates
its entry in the sub-matrix of D. A loop is used to multiply all the required entries in A and
B. See Figure 8 p. 32 (CUDA Programming Guide).
We intentionally do not explain the details of these algorithms. It’s for you to fill the blanks
and perhaps come up with better ideas!

• MPI implementation: For each batch of images, you should subdivide the input images
into smaller image batches and use MPI communication methods to distribute the input
data and Neural Network parameters among MPI nodes, and perform GEMM and other
computations in parallel. The resulting network coefficient updates should be reduced and
sent to all nodes.
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4.2 An even better GEMM implementation
Here is a suggestion for a more advanced implementation with higher performance. Each block can
have size 16×4 (i.e., BlockDim.x = 16, BlockDim.y = 4), for a total of 64 threads. This block
computes a sub-matrix of size 64×16 in D. Similar to the shared memory implementation, all
64 threads in the thread block work cooperatively to loop over the corresponding rows in A and
columns in B. Within each iteration, a 4×16 sub-matrix of B is loaded into the thread block’s
shared memory, with each thread reading one element. Each thread then reads in a 1×4 sub-matrix
of A into a local array a[4], not into shared memory (this is not useful here). In total a 64×4
sub-matrix of A is read, while each one of the 64 threads only uses one row of this sub-matrix.
Each thread computes a row of size 1×16 in the output D.

You may also consider the implementation with a hierarchical tiling documented at
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
Several other tricks and improvements are described on this page as well. It can get complicated.
You don’t need to implement all the recommendations on this page. This is very advanced.

In your report, explain why the approach you picked is advantageous compared to Algorithm
1.

4.3 Improved blocking to reduce MPI communications
This part of the project is worth an extra 15 points as bonus. This part is more challenging
and should be attempted only if you are done with the other assignments in the project and feel
comfortable with exploring a more advanced topic.

Let’s simplify the problem by considering the following simplified situation. We can think of
the feedforward phase as a series of matrix-matrix multiplications of the form WA where A are
activations from layer l − 1 and W are the weights of layer l. Since we are processing multiple
input images at the same time, the number of columns of A is the size of the batch. The number
of columns in W is the number of activations in layer l − 1 and the number of rows is the number
of activations in layer l.

The backpropagation phase corresponds to a series of products of the form W Td where d is the
“gradient” vector from layer l and W Td is the “gradient” for layer l−1. The NN weights are updated
using a sum of rank-1 matrices of the form ∆W =

∑
i dia

T
i , where the sum is over all the input

images. The vector di (from image sample i) is the “gradient” vector from the backpropagation at
layer l while ai is the activation for layer l − 1.

The goal is then to subdivide or block the data and operations in such a way that communication
is minimized. In the current approach, we split the input sample A into column blocks and assign
one block to each processor. Then we do a reduction of all the diaTi contributions from all processors.
Since the size of the matrix ∆W is quite significant, this approach leads to a large MPI overhead.

To reduce the communication time, a common optimization is to partition the NN coefficient
matrices W across different processors. This is called model parallelism as opposed to data paral-
lelism. Data parallelism corresponds to splitting the input “data” across different processors, while
model parallelism correspond to splitting the NN coefficients W because the NN is our model in
this problem. Model parallelism typically splits the weights along a certain dimension, and syn-
chronization occurs when outputs from other parts of the model are required. Splitting weights
across different dimensions results in different operations when synchronization is required. In a
more abstract manner, let’s focus on a product WA and write it out as∑

k

WikAkj
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So for each triple (i, k, j) there is one multiplication and addition to perform. We can map all
the triplets onto a parallelepiped Ω whose dimensions are given by the dimensions of W and A
(namely the number of rows in W , the number of columns in W , and the number of columns in A).
The question is then, generally speaking, how to partition this set of triplets Ω across the different
processors to minimize communication.

You can experiment with different ideas to reduce the amount of data that needs to be com-
municated using MPI. For example, as we perform many iterations, the input data is fixed across
iterations (the input images). Therefore for the first layer you can experiment with splitting W (1)

along the rows (index i) and sharing the input images across all processors (which needs to be
done only once). Similarly, W (2) is a very fat matrix with only 10 rows (the 10 labels). You
can therefore experiment with splitting this matrix along its columns (index k). Experiment with
different types of blocking and determine which one gives the best performance. You can estimate
with hand calculations the communication cost for each scheme in order to guide you towards the
best combination. Look at the matrix and data set sizes used in the code.

You can search the literature for more details on these ideas. For example, see Google Scholar
papers, and Krizhevsky [2014].
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