CME 213 Final Project Spring 2021

CME 213, Introduction to parallel computing
Eric Darve
Spring 2021

& stanford University

Neural Networks on CUDA
Part II: starter code, grading details, instructions

In this second part of the final project, we provide further details about the grading policy and
introduce you to the starter code.

1 Grading details

Please refer to Part I for an overall grading information. Here we explain in detail how we deter-
mine the correctness of the code and test the performance. We have setup four test cases (with
corresponding grading modes in the code) for testing correctness and performance. These test cases
or grading modes can be run by passing command line arguments to the program. More details
about them are given in later sections.

1.1 GEMM correctness

Since the GEMM function is a building block of any neural network implementation and will be
an important tool in your arsenal, we test the GEMM implementation separately from the overall
code testing. We have provided a function prototype called myGEMM for you in gpu_func.cu, which
takes inputs as two scalars «, 3, three matrices A, B, C, and returns the result of D =a AB+ 5C
in C (in place).

Your job is to fill in this function, and we will test your implementation on two sets of inputs
that are relevant to this project: A € R800x784 B ¢ R784x1000. 54 4 ¢ R800x1000 B ¢ R1000x10,
You are welcome to, but you don’t have to use this myGEMM function in your parallel training;
this is only for the purpose of grading.

We test this correctness by running grading mode 4, which runs the myGEMM function alone.
This myGEMM function is called only by rank 0 in this grading mode, i.e., for this part you just
need to write kernels to do GEMM on a single GPU.

1.2 Overall correctness

In large neural network problems, a common issue encountered is the aggregation of rounding errors
or inconsistencies. Unfortunately, the implementations of several operations are not exactly same
on CPU and GPU. Some of the sources for differences include exp () operations used in Softmax and
Sigmoid functions, FMA (fused multiply add), and the order of operations. These discrepancies are
usually of the order of the machine roundoff errors. However, such discrepancies can build up over
time. In general, as the learning rate gets larger, the instability of the algorithm due to roundoff
errors is high. These discrepancies might not lead to any parameter blow-up, but might create
significant differences between the CPU and GPU solutions. This makes determining correctness
challenging.

In order to tackle this, we have setup three test cases for determining correctness in the form
of grading modes. The hyper-parameters are varied for each of the three grading modes 1, 2 and
3. Please see main.cpp for details. In all those modes, a max norm of the difference between
final CPU and GPU results (parameters wO, w@ plm), b(Q)) is considered. If this max norm
is greater than a threshold, your code will fail the correctness test for that case. The actual max

CME 213 Final Project Spring 2021

norm values we get are much lower than this, but we want to provide some leeway in this regard
and have relaxed the threshold. Apart from passing the three correctness tests, the precision on
the validation set of the CPU and GPU implementations must be very close.

In order to get full credit on overall code correctness, all test cases above must meet the threshold
by running a fully parallel code with a number of processes equal to 1, 2, and 4 using MPI and
CUDA. If the code is running on a single GPU or is not using GPUs (just MPI), you will lose a
significant portion of the grade. Similarly, if you are running four processes but only one of them
is using GPUs, you will again lose points. Here, when we say running on GPUs, we expect that all
the GEMM, softmax and sigmoid calculations be done on GPUs.

Case of 3 GPUs (bonus points +5): The case of 3 GPUs is more difficult. Recall that the
full dataset of images needs to be split into batches. The total number of images is equal to 60,000.
They are split into batches of size 800. Here is a function that calculates the size of each batch:

int get_batch_size(int N, int batch_size, int batch) {
int num_batches = (N + batch_size - 1) / batch_size;
return (batch == num_batches - 1) ? N - batch_size * batch : batch_size;

}

Each batch of size 800 then needs to be divided into mini-batches that are assigned to each GPU.
When you select 3 GPUs, it won’t divide evenly. GPU 0 will have 267 images, GPU 1 will have
267 images, and GPU 2 will have 266 images (800 = 267 + 267 + 266). Here is a function that
calculates the size of the mini batch for each rank:

int get_mini_batch_size(int batch_size, int num_procs, int rank) {
int mini_batch_size = batch_size / num_procs;
return rank < batch_size % num_procs ? mini_batch_size + 1 : mini_batch_size;

¥

More importantly, using MPI_Scatter is a little different since MPI_Scatter assumes that each
chunk of data has the same size. For the case of 3 GPUs, as noted above, the chunks have different
sizes (267 and 266). As a result, you should use MPI_Scatterv which allows specifying chunks of
different sizes. You will find documentation for these functions at these pages:
https://www.open-mpi.org/doc/v4.1/

MPI Scatter

MPI_Scatterv

Note: For your convenience, we have provided a function to output the differences between the
serial and parallel versions into a file, and you can use this by passing the debug flag -d when

running your code. Details of this debug mode can be found in

1.3 GEMM Performance

This refers to the performance of your myGEMM function. To test this we run the code in grading
mode 4. The grade for this will be based on the performance of your GEMM function (in terms
of the time taken) relative to other students in the class. The exact method for calculating this
relative grade will be determined by us later depending on the range of performances we get.

In the code, we run this myGEMM function repeatedly for a number of iterations. This has been
currently set to 10, but we might change this based on the performance we see in the submissions.
We believe that this should not affect your implementation.

https://www.open-mpi.org/doc/v4.1/
https://www.open-mpi.org/doc/v4.1/man3/MPI_Scatter.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Scatterv.3.php

CME 213 Final Project Spring 2021

Caveat: If your GEMM implementation does not pass the GEMM correctness test, you will not
receive any points for performance.

1.4 Overall Performance

This refers to the performance of your full NN code. Here we use the default settings of the
program for benchmarking the performance (time taken). Here again, the grade is based on your
performance relative to other students in the class. The exact method for calculating this relative
grade will be determined by us later depending on the range of performances we get.

Caveat: If you do not pass the overall correctness tests, points will be deducted.

2 Starter-code

The starter code integrates the GPU CUDA code and other C++ code. The GPU code is first
compiled by nvcc into object files, and then linked with other parts of the project and libraries by
mpic++ linker. The project is using the Armadillo library for matrices and vectors. The details
about the files are below. Those marked with a star (*) will not be submitted by the submission
script. You are free to modify those files for debugging purposes, but make sure you test with the
original version of those files before you submit. In the other files, you may write any number of
functions you wish to.

In previous years, we were running the calculation using the double precision type double.
However, the Turing GPUs have low performance in double precision so we switch the code to
single precision with the type float. The file utils/types.h is managing the switch from double
to float. For flexibility, we define the type real and make it equal to float or double using the
flag USE_DOUBLE. With the current setup in the starter code, the type real is equal to float.

Note: Please make sure you adequately comment your code and also structure it well. This will
help us read your code.

e *main.cpp: This is the main file for the project. You do not need to change this file except
for your own debugging purposes.

e gpu_func.cu, inc/gpu_func.h: You should implement your GPU CUDA wrapper functions
and kernels in gpu_func. cu and declare them in inc/gpu_func.h. This separates the source
code so that nvcc only compiles the CUDA code into object files, which can be linked into
other parts of the project by the mpic++ linker.

e *inc/neural_network.h: This file contains a basic C++ class to implement the two layer
neural network. Note that all members in neural_network are declared to be public, and
you can access them directly, which allows an easier MPI implementation than with a more
encapsulated class.

e neural_network.cpp: This file already contains a serial implementation of the neural net-
work. Your objective is to fill the parallel_train function with the parallel implementation.

e *utils/tests.cpp *utils/tests.h: These files contain the tests used for determining cor-
rectness and testing performance.

CME 213 Final Project Spring 2021

e *utils/common.cpp, *utils/common.h: These files contain common operations on
arma: :mat that may be useful. You can make your own GPU CUDA implementation accord-
ingly in gpu_func.cu.

e *utils/mnist.cpp, *utils/mnist.h: These files contain code that reads in the MNIST
dataset.

e *utils/types.h: This file contains code to define the type to use for the neural network—we
are using single precision floats.

e *Outputs folder: All the output files go into this folder. There is another folder named
CPUmats inside this folder. All the CPU matrices that are written out during debug mode go
into this folder.

e *obj folder: All the object files generated during compilation will be stored here.

3 Instructions

3.1 Suggested order of implementation

1. Before implementing anything, be sure you have a clear idea of the overall organization of
the calculation and how things will be done, at least at the organizational level. This will
help you start in the right direction and make the correct assumptions when organizing your
calculations.

2. Implement the GPU kernels. Remember to test on multiple matrix sizes to ensure your GPU
kernel handles different cases well. You may choose to implement a single-GPU version of
the full code as a starting point.

3. Validate your parallel algorithm by implementing a “pseudo-parallel” code. This means: di-
vide the data into different parts, but have one process perform the calculation only. This does
not yet involve MPI, but serves to validate your parallel approach and data decomposition
strategy.

4. Implement the MPI version with communication and using multiple ranks. Make sure your
code works with 1, 2, (3,) and 4 ranks.

5. Optimize your GPU kernels. Use shared memory. The primary metric to improve is the
arithmetic intensity, that is you should try to reduce the memory traffic between global
memory and register files.

6. Optimize the MPI communications and parallelization strategy to minimize communication
between MPI ranks.

3.2 Compiling and running instructions

In order to compile the code, you will need to load the following modules:

Modules for final project
module load cuda/11.0
module load openmpi/4.1.0
module load armadillo/10.4.1

CME 213 Final Project Spring 2021

You may find it convenient to copy these lines at the end of the file “/.bashrc in your HOME
directory on icme-gpu. If you do so, the modules will be automatically loaded every time you log
on the computer so you don’t have to do it manually.

To compile the code, just run
$ make
in the directory containing the final project files.

To run your compiled code, run sbatch run.sh. Within the script, to use a single process and
GPU, use

./main [args]
To run your compiled code using N processes and GPUs, use
mpirun -n [N] ./main [args]

The command line arguments for main are explained in the next section.

3.3 Command line arguments

We provide several useful command line arguments for main:

e -n int to change number of neurons in the hidden layer to num
e -r float, -1 float to change reg and learning_rate
e —e int, -b int for num_epochs and batch_size

e -s to run the sequential training together with your parallel training to compare their per-
formance.

e -d for the debug mode. This mode is for the convenience of debugging your code: it will
output the differences of the parameters between the CPU version and the GPU version into
the file Outputs/CpuGpuDiff.txt. For the first time, you need to run the debug flag together
with the serial flag: -sd; this will write the parameters from the CPU version for the first
batch of each epoch into files (see directory Outputs/CPUMats). For later runs (with the same
hyper-parameters), you can use the debug flag only (without -s). This automatically uses
the already stored CPU files (Outputs/CPUMats) so that you need not wait for the CPU code
to run.

e —p int to print debug output and files every num iterations. This overrides the default setting
of writing only for first batch of each epoch.

e —g int for grading mode. Options are 1, 2, 3, 4. Options 1, 2, 3 run the three test cases for
checking correctness, and option 4 runs the GEMM case.
3.4 Profiling instructions

For profiling, we will use Nsight Systems and Nsight Compute. Install the Nsight Systems and
Compute GUI using the instructions below.

1. Create a developer account.
2. Download| Nsight Systems (one of Linux/Windows/macOS Host).
3. Download| Nsight Compute locally from here.

4. Follow the installation instructions.

https://developer.nvidia.com/login
https://developer.nvidia.com/gameworksdownload#?dn=nsight-systems-2021-2-1-58
https://developer.nvidia.com/gameworksdownload#?dn=nsight-compute-2021-1-0

CME 213 Final Project Spring 2021

Nsight Systems Generate the file nsys.qdrep by

1. modifying run.sh by adding nsys profile -o nsys --trace cuda,mpi mpirun in front of
the mpirun command and

2. running sbatch run.sh.

Copy this file over to your local machine. Open the Nsight Systems application, click File — Open,
and select nsys.qdrep. Follow {this link for more details.

Nsight Compute Get the file ncompute.ncu-rep by
1. modifying run.sh to run ncu -o ncompute ./main -g 1 and
2. running sbatch run.sh.

Copy this file over to your local machine. Open the Nsight Compute application, click File —
Open, and select ncompute.ncu-rep. Follow this link for more details.

Tip: Profiling kernel(s) in depth can take a very long time. Use the -e flag in the arguments
for main to limit the number of epochs, e.g., ./main -e 1

3.5 Submission instructions
1. Make sure your code compiles on icme-gpu and runs.

2. The writeup should be written in prelim_report.pdf and final_report.pdf for the Pre-
liminary and Final report respectively. Please upload the PDF file to Gradescope.

3. The project should be submitted using the submission script on cardinal. The submission
script must be run on cardinal.stanford.edu.

4. Copy your submission files to cardinal.stanford.edu. You can use the following command
in your terminal:
scp <your submission file(s)> <your SUNetID>Qcardinal.stanford.edu:

5. The submission script will then copy the files below to a directory accessible to the CME 213
staff. Only the following files will be copied. Make sure these files exist and that no other
files other than those provided in the starter code are required to compile and run your code.
In particular, do not use external libraries, additional header files etc, that would prevent the
teaching staff from compiling the code successfully. Here is the list of files we are expecting
and that will be copied:

gpu_func.h
gpu_func.cu
neural _network.cpp

The script will fail if one of these files does not exist.

6. To submit, type:
/afs/ir.stanford.edu/class/cme213/script/submit.py final_partl <directory with your submission files>
for Part 1, and

/afs/ir.stanford.edu/class/cme213/script/submit.py final_part2 <directory with your submission files>

for Part 2.

https://docs.nvidia.com/nsight-systems/UserGuide/index.html#report
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

	Grading details
	GEMM correctness
	Overall correctness
	GEMM Performance
	Overall Performance

	Starter-code
	Instructions
	Suggested order of implementation
	Compiling and running instructions
	Command line arguments
	Profiling instructions
	Submission instructions

