
CME 213, Introduction to parallel computing
Eric Darve

Radix Sort

1 Radix Sort

1.1 Some background

Before detailing the Radix Sort algorithm, we mention a couple of properties of this sort:

• It is not a comparison sort. This means that contrary to Merge Sort, Quick Sort, Insertion
Sort, . . . , the sorting does not only rely on a comparison operator (i.e., the less-or-equal
operator), instead it compares each element bit-wise.

• It is a stable sort. It means that the sorting maintains the relative order of elements that
have equal values.

• The sorting is not done in place. This implies that we will need a temporary array to store
partial results.

• The complexity of the algorithm is O(kn) where k is the average element length.

You may find this online video useful. There are many online tutorials that you can check as
well.

1.2 The algorithm

Radix Sort1 sorts an array of elements in several passes. To do so, it examines, starting from the
least significant bit, a group of numBits bits, sorts the elements according to this group of bits,
and proceeds to the next group of bits.
More precisely:

1. Select the number of bits numBits you want to compare per pass.

2. Fills a histogram with numBuckets = 2numBits buckets, i.e., make a pass over the data and
count the number of elements in each bucket.

3. Reorder the array to take into account the bucket to which an element belongs.

4. Process the next group of bits and repeat until you have dealt with all the bits of the elements
(in our case 32 bits).

For instance let us say we want to sort:

keys = 0010 1011 0111 0000 0101 1111 1101 1001

Step 1: We choose numBits = 2.
Step 2:

buckets =
1 3 1 3︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸
00 01 10 11

1In this programming assignment, we will implement LSD (least significan digit) Radix Sort.

1

https://www.youtube.com/watch?v=dPwAA7j-8o4
https://www.geeksforgeeks.org/radix-sort/


Step 3:

new keys =
0000 0101 1101 1001 0010 1011 0111 1111︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
00 01 10 11

Step 4: Repeat with the two most significant bits.

1.3 A detailed example

We want to sort the following array:

keys = 001 101 011 000 010 111 110 100

Let us say that numBits = 1, i.e., we process one bit at a time.

First pass

The first thing we do is computing the histogram: in our case we will have numBuckets = 2numBits

= 2 and:
histogramRadixFrequency = 4 4

We scan this histogram (i.e., we create a cumulative sum of the elements, starting at zero and
ignoring the last element since it’s equal to the number of elements):

exScanHisto = 0 4

The next step is to fill the temporary array. To do this, we need to keep track of the local offset
in each of the bucket (the local offset will be used to compute the global offset, i.e., the position in
the (partially) sorted array). We do this using:

localOffsets = 0 0

We now can fill the (partially) sorted array by reading keys and placing the elements in temp keys

(this step is called scattering). We start with:2

temp keys =

After reading the first element in keys we have:

temp keys = 001

localOffsets = 0 1

After the second:

temp keys = 001 101

localOffsets = 0 2

After the third:

temp keys = 001 101 011

localOffsets = 0 3

2An empty cell means that the cell does not contain relevant information.

2



After the fourth:

temp keys = 000 001 101 011

localOffsets = 1 3

After the fifth:

temp keys = 000 010 001 101 011

localOffsets = 2 3

After the sixth:

temp keys = 000 010 001 101 011 111

localOffsets = 2 4

After the seventh:

temp keys = 000 010 110 001 101 011 111

localOffsets = 3 4

At the end of the first pass:

temp keys = 000 010 110 100 001 101 011 111

localOffsets = 4 4

At the end of the pass, we copy the result3 of temp keys into keys.
Second pass

The second pass now focuses on the second bit. The result is:4

keys = 000 100 001 101 010 110 011 111

Third (and last) pass

keys = 000 001 010 011 100 101 110 111

1.4 Parallel implementation

We first divide the array into blocks of size blockSize (here blockSize = 2).

keys =
001 101 011 000 010 111 110 100︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

block 0 block 1 block 2 block 3

Instead of creating a global histogram, we will create numBlocks local histograms using
computeBlockHistograms:

blockHistograms =
0 2 1 1 1 1 2 0︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
block 0 block 1 block 2 block 3

3In fact, there is a way of avoiding this copy by storing alternatively the result in keys and temp keys. If the
number of passes is odd, there is a final copy from temp keys to keys. This is sometimes called ping-ponging.

4Pay attention to the crucial role played by the stability property of Radix Sort!

3



We then combine these histograms into a global one using reduceLocalHistoToGlobal (notice
that this produces the same result as the sequential version):

globalHisto = 4 4

We scan this global histogram using ScanGlobalHisto:

globalHistoExScan = 0 4

We then compute the offset for each of the local histograms using
computeBlockExScanFromGlobalHisto. For this, we start by appending globalHistoExScan to
the front of blockHistograms and discarding the final block as follows

0 4 0 2 1 1 1 1

We then scan this bucket-wise to get blockExScan.

blockExScan =
0 4 0 6 1 7 2 8︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
block 0 block 1 block 2 block 3

Each block in blockExScan represents the bucket-wise offsets in temp keys for that block. The
elements in keys should be written starting from this offset. As an example, the value 001 is the
first value in block 0 and belongs to the second bucket (since its lsd is 1), it should therefore be
written to position 4 in temp keys. The value 101 follows the same pattern and must be written
to the next position in temp keys. In this case, that position is 5 (i.e., 4 + 1). We populate the
(partially) sorted array using populateOutputFromBlockExScan:

• block 0 will write at positions 4 and 5

• block 1 will write at positions 6 and 0

• block 2 will write at positions 1 and 7

• block 3 will write at positions 2 and 3

4


	Radix Sort
	Some background
	The algorithm
	A detailed example
	Parallel implementation


