CME 213, Introduction to parallel computing
Eric Darve
Spring 2021

& stanford University

Homework 1

Total number of points: 100.

Turn in all your code. When writing a test, run your code with the test and make sure to include
the output of the test in your paper. Please do not modify the file names or the Makefile.

$ make

will make all the files

$ make main_q1

will only make the first problem, etc.

Enjoy!

Problem 1

Assume that we want to create a C++ library for matrices. Since matrices often have structure,
it doesn’t make sense to create one class for all matrices. For example, a diagonal and a dense
matrix have very different storage requirements and using a dense matrix class to store both
would be very inefficient. A better approach is to define an interface, to which all matrix
classes must adhere and then create different implementations for different matrix structures.

We want to explore the use of inheritance by implementing a C++ class for symmetric
matrices. This class should have at least the following properties:

« Inherit from a pure abstract base class for general matrices.

+ Use a template argument for the type of the matrix entries. Assume that the type sup-
ports all arithmetic operations: +, -, *, /, such as float or double.

« It should accept a constructor with input argument n, the size of the matrix.
« The storage should be n(n + 1)/2 + O(1) where n is the matrix size.

+ You should define an operator () to access and modify entries in the matrix. The oper-
ator should take as input a row i and a column j.

« You should define an operator << to pretty print the entire matrix.

« You should define a method to calculate the £, “horm” (the number of non-zero ele-
ments).

(a) 15 points. Implement the Matrix and MatrixSymmetric class in the given Matrix.hpp file.
Turn in your code.

(b) 10 points. We want you to demonstrate that you know how to write correct code, which
includes knowing how to test your code. We would like to see tests for different matrix
sizes, getting and setting matrix entries and verifying symmetry, pretty printing your ma-
trix, as well as the £, “norm.” Recall that the £, “norm” is the number of nonzero elements
in the matrix.

Describe the operations that you want your class to correctly support and implement.
Explain which tests you want to write to check whether your class correctly implements
the features you want.

(c) 10 points. Write and turn in code that implements these tests. Run your code. Did your
class pass all your tests?



Problem 2

15 points. Assume you completed the matrix library in Problem 1 and are writing a function
that needs to use a sequence of matrices as input. The input argument should bea std: :vector
of matrices. Since all matrices implement the same Matrix interface, and therefore support the
same basic operations such as addition and multiplication, we would like to use that Matrix
interface rather than the matrix classes for specific cases. This will allow appending different
kinds of matrices to the same std: :vector. Please complete the code given in main_g2.cpp
and demonstrate how this can be done.

Problem 3

15 points. You are running a Monte Carlo simulation and would like the ability to quickly
query the number of samples in a range given by [1b, ub]. There are many ways to achieve
this, but one possibility is to store all samples in an std: :set. Although std: : sets have many
similarities to the mathematical notion of a set, they have the additional property that they
are sortedE] For simplicity, we assume that each data point is uniqueE] Write a function that
takes the following parameters:

o A set containing the data, std::set data,
+ A range given by double 1b and double ub.

And returns the number of data points within the range. You need to use the std: :set: : Llower_bound
and std: :set: :upper_bound functions.
Use the following code to generate some test data:

#tinclude <random>
#include <set>

std::set<double> data;

std::default_random_engine generator;

std::normal_distribution<double> distribution(e.e, 1.0);

for (unsigned int i = 0; 1 < 1000; ++i)
data.insert(distribution(generator));

and report the number of points in the range [1b, ub] = [2, 10]. Turn in your code.

Problem 4

The following are short problems involving the C++ standard library. The code skeleton has
been provided for you, but you will need to implement the test code, which are marked with
TODOs in the code. Finally, you are not allowed to use any loops anywhere outside of your
tests. Instead use std::for_each, std: :transform, std: :sort, std::all_of from algorithm.

(a) 10 points. Implement DAXPY, where DAXPY is a shorthand for ax + y where x and y are
vectors containing doubles, and a is a double. Your DAXPY function should return a new
vector with the result of this operation. Implement this function, verify its correctness
with a test, and turn it in.

(b) 10 points. You are a professor, and you need to compute your students’ grades. You want
to see if everyone has passed or not. For your class, you have determined the following
weights: homework is 20%, midterm is 35%, and the final exam is 45%. To pass, a student

'This is a consequence of the fact that they are implemented as binary search trees
2Otherwise we would need to use the std: :multiset, which lifts the requirement that each entry be unique



must be above 60%. Implement the all_students_passed function, verify its correctness
with a test, and turn it in. Assume all values are percentages, and are in the range [0, 1].
Use the C++ standard library for this.

(c) 5 points. Sort a list of integers such that the odd numbers come first, and then the even
numbers. The numbers within each odd and even number sections should also be sorted
ascending. For example, given the vector [4, 2, 5, 3, o, 1], your function should out-
put [1, 3, 5, @, 2, 4]. Implement the sort_odd_even function, verify its correctness,
and turn it in.

(d) 10 points. One way to implement a sparse matrix is to use a linked list, where each node
holds the tuple (i, j, val), where i is the row, j is the column, and val is the nonzero value
at that location. To improve random access times, it is best to keep this list sorted. To
sort this list, we want elements with smaller row numbers to be towards the head of the
list. If we have two nonzero elements on the same row, the one with the smaller column
index will come first. To visualize this, imagine flattening the matrix into a 1D array. Each
nonzero value in the sorted linked list will thus point to the next nonzero value in the
sparse matrix. Implement the sparse_matrix_sort function, verify its correctness with a
test, and turn it in. You may add public members to the SparseMatrixCoordinate struct.

5 C++ Standard Library Functions

This homework uses quite a few functions from libraries such as algorithm, functional, and
numeric and containers such as vector and list. We have compiled a complete list of all C++
Standard Library functions that may be helpful in this assignment along with its associated
header and a brief description.



Function Header Description

std::all_of algorithm | Returns true if all elements fulfill the given predicate, false oth-
erwise.

std::distance algorithm | Returns the number of “hops” between two iterators.

std::for_each algorithm | Applies the given predicate for each element.

std::sort algorithm | Sorts all elements given a predicate or the default < operator.

std::transform algorithm | Applies a predicate to each element in a src container and places
the result in a dst container.

std::accumulate numeric | Given an initial value v, predicate f, and element x from con-
tainer X, compute v + ), .y f(x). Similar to Python’s reduce.

std::iota numeric Fills a container with [i, i+1, i+2, ...] given some initial i.

std::list<T> list A doubly linked list container.

std::list<T>::sort list Specialized sort for linked lists. Not all sorts work on linked lists.

std::vector<T> vector A resizable array-backed list.

std::set<T> set A sorted container.

std::set<T>::lower_bound set Gets an iterator to the first element not less than the given value.

std::set<T>::upper_bound set Gets an iterator to the first element not larger than the given
value.

std: :default_random_engine random Create an instance to use for anything that needs a PRNG.

std::normal_distribution random Generates normally distributed values with given mean and
standard deviation.

std::cout iostream | Use this to print out stuff to the console.

std::ostream ostream | Use this when overloading the << operator.

std::stringstream sstream Useful when you want to save the << operator output into a
string.

std::stringstream::str sstream | Retrieves the string inside stringstream.

std::exception stdexcept | Base exception class. Useful to catch for tests.

std::runtime_error stdexcept | Thrown during a runtime error. Useful to catch for tests.

std::invalid_argument stdexcept | Throw this when you encounter an invalid argument.

std::out_of_range stdexcept | Throw this when you encounter something out of range.

6 Submission instructions
To submit:

1. For all questions that require explanations and answers besides source code, put those
explanations and answers in a separate PDF file. Upload this file on Gradescope.

2. The rest of the files (Makefile, code, etc) should be submitted using a submission script
on cardinal. The submission script must be run on cardinal.stanford.edu. It will not

work from rice.

3. Copy the directory containing all your submission files to cardinal.stanford.edu. You
can use the following command in your terminal:

scp -r <directory to be submitted> <your SUNetID>@cardinal.stanford.edu:<your directory>

Here is the list of files we are expecting:

main_qg1.cpp
main_q2.cpp
main_q3.cpp




main_q4.cpp
matrix.hpp

4. Make sure your code compiles on rice and runs. To check your code, we will run:
$ make

This should produce 4 executables: main_g1, main_qg2, main_q3, and main_qs.

5. Install python-dateutil. Type:
$ pip3 install python-dateutil

This is a one time operation that is required to run the Python submission script be-
low.

6. Type:
$ /afs/ir.stanford.edu/class/cme213/script/submit.py hwi <directory with your submission files>

The submit.py script will copy the files listed above to a directory accessible to the
CME 213 staff. Only files in the list above will be copied. Make sure these files exist and
that no other files are required to compile and run your code. In particular, do not use
external libraries, additional header files, etc, that would prevent the teaching staff from
compiling the code successfully. The script will fail if one of these files does not exist.

7. You can submit at most 10 times before the deadline; only the last submission will be

graded.

You may review your submission by typing in the following command in your terminal while
you are on cardinal:

1s /afs/ir.stanford.edu/class/cme213/submissions/hwi/<your SUNetID>/<submission number>

In this directory, because of the ACL permissionsE] you are only authorized to list and cre-
ate new files. You cannot read, move or change the content of the files inside those directories.
It is a violation of the honor code to submit your homework files without using the script
provided by the CME 213 staff.

Shttps://uit.stanford.edu/service/afs/sysadmin/userguide/filepermissions


https://uit.stanford.edu/service/afs/sysadmin/userguide/filepermissions

	
	
	
	
	C++ Standard Library Functions
	Submission instructions

