
CME 213, Introduction to parallel computing
Eric Darve
Spring 2021

Homework 2

Total number of points: 100.
In this programming assignment, you will implement Radix Sort, and will learn about OpenMP,

an API which simplifies parallel programming on shared memory CPUs.
Read carefully the tutorial on Radix Sort. You are welcome to check online resources as well.

The algorithm is not simple so make sure you spend some time reviewing it before starting the
programming assignment.

OpenMP is an API which enables simple yet powerful multi-threaded computing on shared
memory systems. To link the OpenMP libraries to your C++ code, you simply need to add
-fopenmp to your compiler flags. You can then specify the number of threads to run with from
within the program, or set environment variables:

export OMP_NUM_THREADS=4 (for sh/ksh/bash shell)

setenv OMP_NUM_THREADS 4 (for csh shell)

We will cover OpenMP in class. You can learn more about OpenMP at
http://openmp.org/

If you find yourself struggling, there are many excellent examples at:
https://computing.llnl.gov/tutorials/openMP/exercise.html

Please do not modify the filenames, Makefile or any of the test files. Only files you need to
modify are main q1.cpp, main q2.cpp, and parallel radix sort.h. Do not forget to set the
number of threads before running your program.

Typing make will make all the files; typing make main_q1 will only make the first problem, etc.
We provide script hw2.sh to compile and run all executables. You can invoke the script with

./hw2.sh.
You are free to choose hardware platform to run your experiments. Here are the three options:

1) Your personal machine 2) Farmshare cluster and 3) icme-gpu.stanford.edu.
Running code on icme-gpu is a little different from a “regular” computer. A cluster typically

has two types of nodes: the login node(s), and the compute nodes. The login node is where you
are when you log in. This node is used primarily to compile code and for SLURM commands (see
below). The compute nodes are where you actually run your parallel code. The reason why it is
set up this way is that the compute nodes are resources that need to be allocated fairly to all users.
For example, a user could decide to run 6 codes for one week and since there are only 6 nodes, that
user would occupy the entire machine for a week, blocking other users from using the machine. To
manage this, we use SLURM, which is the software that is responsible for managing all the jobs
users want to run. A job is a shell script, which contains commands to run your code. In our case,
this is the file hw2.sh. To run this script, you need to queue it using SLURM. This is done using
sbatch ./hw2.sh. This command will add your job to a queue and as soon as a compute node is
available it will run your code. The output shows up as a file slurm.sh.out in the directory where
you run the command. If some of the compute nodes are idle, the job will run immediately. If not,
you have to wait for a node to become available. This process is managed by SLURM.

One important consequence of this is that you should not log in interactively on a compute node
(using for example srun). This reserves a node for you and no one else can use it. If 6 students do
that, no one else will be able to run a job on the cluster.

Here are the steps to use the cluster:

1

http://openmp.org/
https://computing.llnl.gov/tutorials/openMP/exercise.html


1. Copy your files to icme-gpu.stanford.edu. Use scp or sshfs. See instructions for Sherlock
for details on this.

2. Log in using: ssh SUNETID@icme-gpu.stanford.edu, using your SUNET ID and password.
You will need a VPN connection if logging in from outside campus.

3. hw2.sh in starter code has sbatch commands that specify the CME partition (#SBATCH -p CME)
and redirect the output to slurm.sh.out.

4. Compile your code by running make and fix compiling errors.

5. When you are ready to run, use sbatch ./hw2.sh. This will start your code on one of the
available compute nodes of the cluster. The output will be in slurm.sh.out.

For additional SLURM commands, see Table 1. Use COMMAND --help to see usage for each com-
mand.

Name Description

sbatch launch a batched job
sinfo show available compute node partitions
scancel cancel a scheduled job
squeue display queued jobs

Table 1: sbatch commands

More information:

• SLURM page for icme-gpu.

• SLURM page on Sherlock.

• SLURM quickstart

• SLURM documentation

Problem 1

In this short problem you will implement a parallel function that sums separately the odd and even
values of a vector. The values are of type unsigned int.
For example, on

v = 1 5 2 8 8 1 0 5

the output should be:
sums = 18 12

in which:
18 = 2 + 8 + 8 + 0

12 = 1 + 5 + 1 + 5

The starter code for this problem contain the following files (* means that you should not modify
this file):

2

https://www.sherlock.stanford.edu/docs/storage/data-transfer/
https://uit.stanford.edu/service/vpn
https://icme.stanford.edu/get-involved/resources/hpc-resources
https://www.sherlock.stanford.edu/docs/getting-started/submitting/
https://slurm.schedmd.com/quickstart.html
https://slurm.schedmd.com/


• main q1.cpp: This is the file that you will need to modify in this problem. It contains the
prototypes for the functions you need to implement.

• *tests q1.h: This is the header file to the test utility functions, e.g., ReadVectorFromFile.

• *tests q1.cpp: This contains the implementation of the test utility functions.

• *Makefile: To compile just the Problem 1 code, run make main_q1. This compiles main q1.cpp

(and the file containing the tests). Once the code is compiled, you can run it by typing
./main_q1.

The questions in this homework can be completed using parallel openMP for loops and the
reduction construct when required.

Question 1 (18 points)
Implement serialSum (for test purposes) and parallelSum that compute the sums of even and
odd elements Function skeletons have been provided for the same.

Problem 2

In this problem, you will implement Radix Sort in parallel. If you need a refresher on the details
of Radix Sort, you should refer to the accompanying Radix Sort Tutorial.

Radix Sort sorts an array of elements in several passes. To do so, it examines, starting from
the least significant bit, a group of numBits bits, sorts the elements according to this group of bits,
and proceeds to the next group of bits.
More precisely:

1. Select the number of bits numBits you want to compare per pass.

2. Fill a histogram with numBuckets = 2numBits buckets, i.e., make a pass over the data and
count the number of elements in each bucket.

3. Reorder the array to take into account the bucket to which an element belongs.

4. Process the next group of bits and repeat until you have dealt with all the bits of the elements
(in our case 32 bits).

Here is the code you are given to get started (* means that you should not modify this file):

• parallel radix sort.h: This contains helper functions used for serial and parallel imple-
mentations of radix sort. Do not modify the function signatures, but instead only implement
the bodies of the functions. You should modify this file. In particular you should implement:
computeBlockHistograms, reduceLocalHistoToGlobal, scanGlobalHisto,
computeBlockExScanFromGlobalHisto, populateOutputFromBlockExScan.

• main q2.cpp: This contains the final functions of serial and parallel lsd radix sort, and test
codes.

• *tests q2.h: This is the header file to the test functions.

• *tests q2.cpp: This contains the implementation of the test functions.

3



• *test macros.h: This header files contains some macros that are useful for testing. (If you
are using a Windows system or the output looks garbled you will need to uncomment the line
// #define NO PRETTY PRINT for your own debugging).

• *Makefile: To compile the code for just problem 2, run make main_q2. This compiles
main q2.cpp (and the file containing the tests). Once the code is compiled, you can run it
by typing ./main_q2.

To illustrate the role of each function you need to implement, we will use the following example:

keys = 001 101 011 000 010 111 110 100

Question 1 (20 points)

Write a parallel function computeBlockHistograms using OpenMP to create the local his-
tograms. The prototype is given in the starter code. Test1 should pass if your routine is imple-
mented correctly. This will run a test we implemented. If the code runs with no error, this means
that your function was correctly implemented. This is also the procedure we will adopt to grade
your code.

Here are some details on the role of computeBlockHistograms. We first divide the array into
blocks of size sizeBlock (here sizeBlock = 2).

keys =
001 101 011 000 010 111 110 100︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

block 0 block 1 block 2 block 3

The goal of computeBlockHistograms is to create local histograms (a histogram per block). In this
case, we use just two buckets (bucket 0 for elements ending with bit 0 and bucket 1 for elements
ending with bit 1). The result is:

blockHistograms =
0 2 1 1 1 1 2 0︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
block 0 block 1 block 2 block 3

Question 2 (10 points)
Implement a function reduceLocalHistoToGlobal that combines the local histograms into a global
histogram. The prototype is given in the starter code. Test2 should pass if your routine is
implemented correctly. This will run a test we implemented.
In our example, the output of reduceLocalHistoToGlobal should be:

globalHisto = 4 4

Question 3 (10 points)
Implement scanGlobalHisto that scans the global histogram. The prototype is given in the starter
code. Test3 should pass if your routine is implemented correctly. In our case the result of the
function is:

globalHistoExScan = 0 4

4



Question 4 (12 points)
Implement computeBlockExScanFromGlobalHisto that computes the offsets at which each block
will write in the sorted vector. The prototype is given in the starter code. Test4 should pass if
your routine is implemented correctly.
In our case the output is:

blockExScan = 0 4 0 6 1 7 2 8

This means that block 0 will start writing:

• the elements ending with bit 0 at offset 0 in the sorted array

• the elements ending with bit 1 at offset 4 in the sorted array

Question 5 (20 points)
Implement the parallel function populateOutputFromBlockExScan that populates the sorted ar-
ray. The function populateOutputFromBlockExScan should use the work done in the previous
steps to populate the (partially) sorted array. The prototype is given in the starter code. Test5

should pass if your routine is implemented correctly.
In our case, the result would be:

keys = 000 010 110 100 001 101 011 111

To get the sorted array, you need to do two others passes on the array.

Question 6 (10 points)

In file main_q2.cpp, as written, the function radixSortParallel

int radixSortParallel(std::vector<uint>& keys, std::vector<uint>& keys_tmp, uint numBits) {

for(uint startBit = 0; startBit < kNumBitsUint; startBit += 2 * numBits) {

radixSortParallelPass(keys, keys_tmp, numBits, startBit, keys.size() / 8);

radixSortParallelPass(keys_tmp, keys, numBits, startBit + numBits,

keys.size() / 8);

}

return 0;

}

uses only 8 blocks (keys.size() / 8). Modify this function so that the number of blocks can be
varied. Here is the skeleton code to use:

int radixSortParallel(std::vector<uint>& keys, std::vector<uint>& keys_tmp,

uint numBits, uint numBlocks) {

for(uint startBit = 0; startBit < 32; startBit += 2 * numBits) {

...

}

return 0;

}

with an extra argument at the end.
Make sure your code compiles and runs correctly for the previous questions in this homework.
In the same file, you have code that is inside blocks like

5



#ifdef QUESTION6

...

#endif

In this revised version of the homework, we are going to change the benchmark. In the first
#ifdef QUESTION6, it is sufficient to initialize a single vector with the reference solution:

#ifdef QUESTION6

std::vector<uint> keys_orig = keys_stl;

#endif

Now keys_orig has the original, unsorted input data. For the second #ifdef QUESTION6 block,
where the benchmarks are run, use the following skeleton code:

#ifdef QUESTION6

std::vector<uint> jNumBlock = {1,2,4,8,12,16,24,32,40,48};

printf("Threads Blocks / Timing\n ");

for(auto jNum : jNumBlock) {

printf("%8d", jNum);

}

printf("\n");

success = true;

for(auto n_threads : jNumBlock) {

//TODO: omp_set_num_threads(...)

printf("%4d ", n_threads);

for(auto jNum : jNumBlock) {

keys_parallel = keys_orig;

double startRadixParallel = omp_get_wtime();

//TODO: radixSortParallel(...)

double endRadixParallel = omp_get_wtime();

EXPECT_VECTOR_EQ(keys_stl, keys_parallel, &success);

printf("%8.3f", endRadixParallel - startRadixParallel);

}

printf("\n");

}

if(success) {

std::cout << "Benchmark runs: PASS" << std::endl;

} else {

std::cout << "Benchmark runs: FAIL" << std::endl;

}

#endif

You will need to add #include <cstdio> at the top of your file to compile your code.
Use this code to run benchmarks varying the block size and the number of threads to use. Your

code should print Benchmark runs: PASS at the end.
Turn in the code you used to run these benchmarks.
Print the running times you obtain in the form of a table where each row corresponds to a

number of threads and each column to a number of blocks.

6



Comment on your result. In particular, what is the optimal number of threads and blocks?
How sensitive is the timing with respect to the number of threads and blocks?

Be aware of the fluctuations and uncertainty in your timings when trying to draw conclusions.

Total number of points: 100

A Submission instructions

To submit:

1. For all questions that require explanations and answers besides source code, put those expla-
nations and answers in a separate PDF file and upload this file on gradescope. The name of
the file should be: hw2.pdf.

2. The homework should be submitted using a submission script on cardinal. The submission
script must be run on cardinal.stanford.edu.

3. Copy your submission files to cardinal.stanford.edu. The script submit.py will copy only
the files below to a directory accessible to the CME 213 staff. Only these files will be copied.
The rest of the files required (tests.cpp’s etc.) will be copied by us. Therefore, make sure you
make changes only to the files below. You are free to change other files for your own debugging
purposes, but make sure you test it with the default test files before submitting. Also, do
not use external libraries, additional header files, etc, that would prevent the teaching staff
from compiling the code successfully. Here is the list of files we are expecting and that will
be copied:

main_q1.cpp

main_q2.cpp

parallel_radix_sort.h

The script will fail if one of these files does not exist.

4. To check your code, we will run:
$ make

This should produce 3 executables: main_q1, main_q2 and main_q2_part6.

5. To submit, type:

$ /afs/ir.stanford.edu/class/cme213/script/submit.py hw2 <directory with your submission files>

B Advice

We gather here a few advice for a successful assignment:

• Review the basics of the STL. In particular, you can look at:
https://en.cppreference.com/w/cpp/container/vector

Make sure to take a look at the methods which return const iterators.

• Review the basic bitwise operations.

7

https://en.cppreference.com/w/cpp/container/vector


• Before you attempt implementing the parallel Radix Sort, make sure that you understand
how the serial version works.

• Do not jump straight into the code. First come up with a strategy to implement parallel
Radix Sort and then code it.

• If a part is not working, it is useless to keep going. Always fix the bug(s) before moving to
the next part.

8


	
	
	Submission instructions
	Advice

