
CME 213, Introduction to parallel computing
Eric Darve
Spring 2021

Homework 3

Total number of points: 130. In this programming assignment you will use NVIDIA’s Compute
Unified Device Architecture (CUDA) language to implement a basic recurrence algorithm and the
pagerank algorithm. In the process you will learn how to write general purpose GPU programming
applications and consider some optimization techniques. You must turn in your own copy of the
assignment as described below. You may discuss the assignment with your peers, but you may not
share answers. Please direct your questions about the assignment to Piazza. Every time you open
the terminal, you have to run module load cuda/10.0. Alternatively, you can add this to your
.bashrc. To compile and run your code, run sbatch hw3.sh. The output will be in slurm.sh.out.
For all questions asking to comment on plots, make sure to describe the shape and
different regions (such as increasing performance or asymptotic behavior) of the graph
and explain why these patterns may emerge.

CUDA
“C for CUDA” is a programming language subset and extension of the C programming language,
and is commonly referenced as simply CUDA. Many languages support wrappers for CUDA, but
in this class we will develop in C for CUDA and compile with nvcc.

The programmer creates a general purpose kernel to be run on a GPU, analogous to a function
or method on a CPU. The compiler allows you to run C++ code on the CPU and the CUDA code
on the device (GPU). Functions which run on the host are prefaced with __host__ in the function
declaration. Kernels run on the device are prefaced with __global__. Kernels that are run on the
device and that are only called from the device are prefaced with __device__.

The first step you should take in any CUDA program is to move the data from the host
memory to device memory. The function calls cudaMalloc and cudaMemcpy allocate and copy data,
respectively. cudaMalloc will allocate a specified number of bytes in the device main memory and
return a pointer to the memory block, similar to malloc in C. You should not try to dereference a
pointer allocated with cudaMalloc from a host function.

The second step is to use cudaMemcpy from the CUDA API to transfer a block of memory from
the host to the device. You can also use this function to copy memory from the device to the host.
It takes four parameters, a pointer to the device memory, a pointer to the host memory, a size, and
the direction to move data (cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost). We have
already provided the code to copy the string from the host memory to the device memory space,
and to copy it back after calling your shift kernel.

Kernels are launched in CUDA using the syntax kernelName<<<...>>>(...). The arguments
inside of the chevrons (<<<blocks, threads>>>) specify the number of thread blocks and thread
per block to be launched for the kernel. The arguments to the kernel are passed by value like in
normal C/C++ functions.

There are some read-only variables that all threads running on the device possess. The three
most valuable to you for this assignment are blockIdx, blockDim, and threadIdx. Each of these
variables contains fields x, y, and z. blockIdx contains the x, y, and z coordinates of the thread
block where this thread is located. blockDim contains the dimensions of thread block where the
thread resides. threadIdx contains the indices of this thread within the thread block.

1

We encourage you to consult the development materials available from NVIDIA, particularly
the CUDA Programming Guide and the Best Practices Guide available at
http://docs.nvidia.com/cuda/index.html

Problem 1 Recurrence
The purpose of this problem is to give you experience writing your first simple CUDA program.
This program will help us examine how various factors can affect the achieved performance.

Inspired by the Mandelbrot Set, we want to perform the following recurrence for several values
of c:

zn+1 = z2n + c.

z is in general a complex number but for simplicity we will use floats in this homework. For each
value of c, you can study the sequence zn. If zn does not diverge (starting from z0 = 0) then the
point c belongs to the Mandelbrot set. In Figure 1, the coordinates of each pixel correspond to
the real and imaginary parts of c. The color of a pixel is determined by computing the smallest
iteration n for which |zn| > 2. One can prove that if |zn| > 2 for some n then |zn| → ∞ as
n → ∞. Note that the recurrence is done for num_iter iterations, and the values of the c’s are set
in initialize_array() in main_q1.cu.

Figure 1: Mandelbrot Set. Source: Wikipedia. The black points in the image belong to the
Mandelbrot set. The sequence zn does not diverge for the corresponding c. Although not obvious,
the Mandelbrot set is a connected set.

You should be able to take the files we give you and type make main_q1 to build the executable.
The executable will run, but since the CUDA code hasn’t been written yet (that’s your job), it
will report errors and quit. All locations where you need to write code are noted by a TODO in the
comments. For this problem we provide the following starter code (* means you should not modify
the file):

• main_q1.cu—This is the main file. We have already written most of the code for this as-
signment so you can concentrate on the CUDA code. We take care of computing the host
solution and checking your results against the host reference. There is also code to generate
the tables you will need to do the benchmarking questions. You will do questions 1 and 2 in
this file.

2

http://docs.nvidia.com/cuda/index.html
https://en.wikipedia.org/wiki/Mandelbrot_set

• recurrence.cu—This file already contains the necessary function headers—do not change
these. You should fill in the body of the kernel and launch the kernel from doGPURecurrence().

• *Makefile—make main_q1 will build the binary. make clean will remove the executables.
You should be able to build and run the program when you first download it, however only
the host code will run.

• hw3.sh—This script is used to submit jobs to the queue. You need to comment out the other
lines in the file if you only want to run ./main_q1.

Question 1.1
10 points. Allocate GPU memory for the input and output arrays for the recurrence. Free this
GPU memory at the end. This code (approx. 4 lines) should be in main() in main_q1.cu.

Question 1.2
10 points. Implement initialize_array(), the function that initializes an array of a given size.
The values are random floats between −1 and 1. These will be the constants c in the recurrence.
This code should be in main_q1.cu.

Question 1.3
20 points. Implement the recurrence kernel and launch it. These should be implemented in
recurrence() and doGPURecurrence() respectively in recurrence.cuh. You can see a CPU
implementation of the recurrence in host_recurrence() and a sample launch of the kernel in
main(), both in main_q1.cu. Add the output of the code (it should be 3 tables) to your PDF
submission. The whole run may take 10 minutes.

Question 1.4
10 points. Set the number of blocks to be 72, the number of iterations to be 40,000, and the array
size (number of constants we test) to be 1,000,000. Vary the number of threads per block as 32,
64, 96, …, 1024. Take the table that is generated and plot the performance in TFlops/sec vs. the
number of threads. Comment on and explain the shape of the graph.

Question 1.5
10 points. Set the number of threads per block to be 128, the number of iterations to be 40,000,
and the array size (number of constants we test) to be 1,000,000. Vary the number of blocks as 36,
72, 108, …, 1152. Take the table that is generated and plot the performance in TFlops/sec vs. the
number of blocks. Comment on and explain the shape of the graph. Hint: this GPU has 72 SMs
and 8 blocks per SM.

Question 1.6
10 points. Set the number of threads per block to be 256, the number of blocks to be 576, and the
array size (number of constants we test) to be 1,000,000. Vary the number of iterations as in the
code. Take the table that is generated and plot the performance in TFlops/sec vs. the number of
iterations. Comment on and explain the shape of the graph.

3

Problem 2 PageRank
PageRank was the link analysis algorithm responsible (in part) for the success of Google. It
generates a score for every node in a graph by considering the number of in links and out links of a
node. We are going to compute a simplified model of pagerank, which, in every iteration computes
the pagerank score as a vector π and updates π as

π(t+ 1) =
1

2
Aπ(t) +

1

2N
1

where A is a normalized adjacency matrix (so that each column sums to 1), N is the number of
nodes in the graph and 1 is a vector with all 1’s. Each entry in the vector π corresponds to the
score for one node. The matrix A is sparse and each row i corresponds to the node ni, the non-zero
entries correspond to the nodes nj that have a directed edge to ni (i.e., Aij > 0 ⇔ (nj , ni) ∈ E,
where E is the set of directed edges). Since we normalize the columns of A, the entries in the j’th
column are all proportional to 1/outDegree(nj). We will choose the average number of connections
for a node to be µ ∈ N+ and then have the actual number of connections per node vary from 1 to
2µ− 1. The total number of edges is given by |E| = µN .

In the actual algorithm this operation is performed until the change between successive π vectors
is sufficiently small. In our case we will choose a fixed number of iterations to more easily compare
performance across various numbers of nodes and edges. If you wish to learn more about the
algorithm itself, check http://en.wikipedia.org/wiki/PageRank

For this problem, we provide the following starter code (* means you should not modify the
file):

• *main_q2.cu—contains the code that sets up the problem and generates the reference so-
lution. It also has a result generating loop that will generate a table of timing results for
various numbers of edges and nodes. Other than filling in the bandwidth calculation and a
tiny required change to answer one of the questions, you should not modify this file.

• pagerank.cu—this is the file you will need to modify and submit. Do not change the function
headers but fill in the bodies and follow the hints/requirements in the comments.

• *Makefile
$ make main_q2
will build the pagerank binary.
$ make clean
will remove the executables. You should be able to build and run the program when you first
download it, however only the host code will run.

• hw3.sh—This script is used to submit jobs to the queue. You need to comment out the other
lines in the file if you only want to run ./main_q2.

Question 2.1
35 points. Fill in the functions so that the program no longer reports any errors.

Question 2.2
10 points. What is the formula for the total number of bytes read from and written to the
global memory by the algorithm? Analyze the code you’ve written and do the calculation “on
paper” instead of running actual code. Hint: your answer should be based on the number of nodes,
the average number of edges, and the number of iterations. Don’t include any data transfer between
CPU and GPU in this calculation.

4

http://en.wikipedia.org/wiki/PageRank

Add in the bandwidth calculation in the function get_total_bytes to reflect your answer to
Question 2.2 in pagerank.cuh.

Question 2.3
5 points. From the table of results, plot the memory bandwidth (GB/sec) vs. problem size for an
average number of edges equal to 10. Make sure the plot is readable. You do not have to comment
the plot.

Question 2.4
10 points. Comment on the plot. What does the memory access pattern look like for this problem?
Using your answer to this question, explain the difference in bandwidth between Problem 2 and
the maximum bandwidth of 480 GB/sec (page 27).

A Submission instructions
To submit:

1. For all questions that require explanations and answers besides source code, put those expla-
nations and answers in a separate PDF file and upload this file on Gradescope.

2. The homework should be submitted using a submission script on cardinal. The submission
script must be run on cardinal.stanford.edu.

3. Copy your submission files to cardinal.stanford.edu. The script submit.py will copy only
the files below to a directory accessible to the CME 213 staff. Only these files will be copied.
Any other required files (e.g., Makefile) will be copied by us. Therefore, make sure you make
changes only to the files below. You are free to change other files for your own debugging
purposes, but make sure you test it with the default test files before submitting. Also, do
not use external libraries, additional header files, etc, that would prevent the teaching staff
from compiling the code successfully. Here is the list of files we are expecting and that will
be copied:

main_q1.cu
recurrence.cuh
pagerank.cuh

The script will fail if one of these files does not exist.

4. To check your code, we will run the following on icme-gpu:
$ make
This should produce 2 executables: main_q1 and main_q2.

5. To submit, type:
$ /afs/ir.stanford.edu/class/cme213/script/submit.py hw3 <directory with your submission files>

B Advice and Hints
• In order to perform a batch update, we use two pagerank vectors in our algorithm and switch

their roles on every iteration (reading from one and writing to the other).

5

https://ericdarve.github.io/cme213-spring-2021/Lecture%20Slides/Lecture_09.pdf#page=27

• For debugging it will be helpful to limit the number of cases being run to 1. In the recurrence
problem do this by using 1 value instead of the arrays for the 3 for loops. In the pagerank
problem change the values of num_nodes and num_edges.

• If you need some documentation on CUDA, you can look at the documents uploaded on the
course website (https://ericdarve.github.io/cme213-spring-2021/) or visit the CUDA
website at https://docs.nvidia.com/cuda/index.html.

• For Problem 2, make sure you understand how the sparse matrix is encoded in memory. This
will greatly help you figure out the code to write.

6

https://ericdarve.github.io/cme213-spring-2021/
https://docs.nvidia.com/cuda/index.html

	Recurrence
	
	
	
	
	
	

	PageRank
	
	
	
	

	Submission instructions
	Advice and Hints

