CME 213, Introduction to parallel computing
Eric Darve
Spring 2021

& stanford University

Homework 4

Total number of points: 100 (+ 15 bonus).

This assignment builds on the previous assignment’s theme of examining memory access pat-
terns. You will implement a finite difference solver for the 2D heat diffusion equation in different
ways to examine the performance characteristics of different implementations.

For this homework, please watch the video on canvas and its associated |slide deck.

Background on the heat diffusion PDE. The heat diffusion PDE that we will be solving can
be written:

or 8T 0*T

ot = 022 T 9
To solve this PDE, we are going to discretize both the temporal and the spatial derivatives. To
do this, we define a two—dimensionaﬂ grid G;j, 1 < i < ng, 1 < j < ny, where we denote by n,
(resp. ny) the number of points on the z-axis (resp. y-axis). At each time-step, we will evaluate
the temperature and its derivatives at these gridpoints.

While we will consistently use a first order discretization scheme for the temporal derivative,
we will use 24, 4th or 81 order discretization of the spatial derivative

If we denote by Tf] the temperature at time ¢ at point (i,) of the grid, the 2"d order spatial
discretization scheme can be written as:

Tyt =105+ C9 (T — 2T+ TL) + CW (T = 2T0 + T)
The C®) (xfcl in the code) and C¥) (yfcl in the code) constants are called Courant numbers.
They depend on the temporal discretization step, as well as the spatial discretization step. To
ensure the stability of the discretization scheme, they have to be less than a maximum value given
by the Courant-Friedrichs-Lewy conditionﬁ You do not have to worry about this, because the
starter code already takes care of picking the temporal discretization step as to maximize the
Courant numbers while ensuring stability.

The starter code also contains host and device functions named stencil which contain the
coefficients that go into the update equation. Therefore, you do not need to figure out how to
implement the different order updates. You only need to understand how this function works and
pass in the arguments correctly.

Boundary conditions. The starter code contains the functions that will update the boundary
conditions for you (see file BC.h, in particular the function gpuUpdateBCs0Only) and the points that
are in the border (which has a size of order / 2). This way, you do not have to worry about the
size of the stencil as you approach the Wallﬁ

'n fact, the size of the grid is g, x g, but we will only update the interior region, which size is n, x n,,.

2For instance, if we use a 4" order scheme, we will express the derivative with respect to = of T' at point (4,7)
using Tit_27j, T,-t_Lj, Tf’j, Tl-t_'_l’j and Tit+27j.

31f you are interested, you can read more about this at |http://en.wikipedia.org/wiki/
Courant-Friedrichs-Lewy_condition.

“A general way of dealing with this problem is to change the size of the stencil as you approach the wall. This is

complicated and we simplified the process for this homework.

https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8e103553-aedf-434c-a1c5-ad1400016f4c
https://ericdarve.github.io/cme213-spring-2021/Lecture%20Slides/Lecture_10.pdf#page=32
http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition
http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition

Various implementations. In this programming assignment, we are going to implement 2 dif-
ferent kernels (and you can do a third one for extra credit):

e Global (function gpuStencilGlobal): this kernel will use global memory and each thread

will update exactly one point of the mesh. You should use a 1D Grid and 1D Blocks with
ng X n, threads total.

Block (function gpuStencilBlock): this kernel will also use global memory. Each thread will
update numYPerStep points of the mesh (these points form a vertical line). You should use a
2D grid with ng x n,/numYPerStep threads total.

(Extra Credit) Shared (function gpuStencilShared): this kernel will use shared memory. A
group of threads must load a piece of the mesh in shared memory and then compute the new
values of the temperatures on the meshE] Each thread will load and update several elements.

Parameter file. The parameters used in the computation are read from the file params.in. You
will need to modify some parameters (see description of the starter code) in this file to answer some
of the questions. But this file will be not be submitted through the submission script.

Here is a list of parameters that are used in the order they appear in the file:

int nx_, ny_; // number of grid points in each dimension
double 1x_, ly_; // extent of physical domain in each dimension
int iters_; // number of iterations to do

int order_; // order of discretization

Starter code The starter code is composed of the following files (* means the file will not be
submitted by our script):

*main.cu — This is the CUDA driver file. Do not modify this file.
gpuStencil.cu — This is the file containing the kernels. You will need to modify this file.

*Makefile — make will build the binary. make clean will remove build files as well as debug
output. Do not modify this file.

xparams.in — This file contains a basic set of parameters. For debugging, performance
testing, and to answer the questions, you will need to modify this file. The only parameters
you should modify are nx, ny (line 1) and order (line 4). This file however will not get
submitted through the script.

*simParams.h and *simParams.cpp — These files contain the data structure necessary to
handle the parameters of the problem. Do not modify these files.

*Grid.h and *Grid.cu — These files contain the data structure that models the grid used
to solve the PDE. Do not modify this file.

*BC.h — This file contains the class boundary_conditions that will allow us to update the
boundary conditions duri I ng the simulation. Do not modify this file.

*hw4 . sh — This script is used to submit jobs to the queue (see Appendix [Al).

®Note however, that the threads that loaded data on the borders of the small piece will stay idle during the
computation step.

Note The files in the starter code contain some additional information about the implementation
in the form of comments. Additionally, the CPU implementation should provide a clearer picture
of the method and should aid your GPU work.

Running the program Type make to compile the code. Once this is done, you can use the

command:

$./main [-g] [-b] [-s]

where -g stands for global, -b for block, and -s for shared. Note that you can run several implemen-

tations at the same time (for instance ./main -g -b to run the global and block implementations).
The output produced by the program will contain:

e The time and bandwidth for the CPU implementation, as well as for the implementations
that you specified when running the program.

e A report of the errors for the GPU implementations. Namely, the program will output:

— The Ly norm of the final solution from the CPU implementation (i.e. the reference).
— The Ly, norm of the relative error between the reference solution and the GPU solution.

— The Ly norm of the error normalized by the Ly norm of the CPU implementation.
Typical ranges for the errors (and for the parameters that you will be using) are:
° [10_5, 10_3] for Lo norm error.
° [10*6, 10*4] for Ly norm error.
Search for TODO in gpuStencil.cu to see where you need to implement code.

Question 1

(30 points) Implement the function gpuStencilGlobal that runs the solver using global memory,
and create 3D surface plots of temperature on a 256 x 256 grid at iteration 0, 1000 and 2000
respectively, with 8th order. You must also fill in the function gpuComputationGlobal. The
difference (in terms of the norms) between your implementation and the reference should be in the
expected range. Grid class implements member function saveStateToFile to dump all the data
of the grid to a CSV file. You can choose your own tools (Python, MATLAB, etc.) to generate
those plots, and include them in your writeup.

Question 2

(35 points) Implement the function gpuStencilBlock that runs the solver using global memory
but where each thread computes numYPerStep points on the grid. You must also fill in the function
gpuComputationBlock. You should use 2D blocks and grid to implement the blocking strategy
we talked about in the class. You need to decide your block and grid dimensions, as well as
numYPerStep to optimize performance of your code. The difference (in terms of the norms) between
your implementation and the reference should be in the expected range.

Question 3

(15 points) Plot the bandwidth (GB/s) as a function of the grid size (in units of MegaPoints) for
the following grid sizes: 256x256; 512x512; 1024 x1024; 2048 x2048; 4096x4096. You can choose
number of iterations to run in order to generate your results. You should run enough iterations so
results are stable and meaningful (clearly 1 is not enough).

You must have 2 plots (or 3 plots if you choose to do the extra credit) as follows:

1. For order = 4, plot the bandwidth for the 2 (or 3) different algorithms.
2. For the block implementation, plot the bandwidth for the 3 different orders.
3. If you implemented the shared algorithm, plot the bandwidth for the 3 different orders.

Question 4

(20 points) Which kernel (global, block or shared) and which order gives the best performance (your
answer may depend on the grid size)? FExplain the performance results you got in Question
Specifically, explain performance differences (i) among kernels, (ii) from varying order, and (iii)
from varying problem size.

Question 5

(Extra credit 15 points) Implement the function gpuStencilShared that runs the solver using
shared memory. You should also fill in the function gpuComputationShared. Note that you have
to answer the questions related to shared memory implementation in Questions 3 and 4 in order
to get the full extra credit.

A Submission instructions

To submit:

1. For all questions that require explanations and answers besides source code, put those expla-
nations and answers in a separate PDF file and upload this file on Gradescope.

2. Make sure your code compiles on icme-gpu and runs. To check your code, we will run:
$ make
This should produce one executable: main

3. The homework should be submitted using a submission script on cardinal. The submission
script must be run on cardinal.stanford.edu.

4. Copy your submission files to cardinal.stanford.edu. The script submit.py will copy only
the files below to a directory accessible to the CME 213 staff. Only these files will be copied.
Any other required files (e.g., Makefile) will be copied by us. Therefore, make sure you make
changes only to the files below. You are free to change other files for your own debugging
purposes, but make sure you test it with the default test files before submitting. Also, do
not use external libraries, additional header files, etc, that would prevent the teaching staff
from compiling the code successfully. Here is the list of files we are expecting and that will
be copied:

gpuStencil.cu

5. To submit, type:

$ /afs/ir.stanford.edu/class/cme213/script/submit.py hw4 <directory with your submission files>

6. You can submit at most 10 times before the deadline; each submission will replace the previous
one.

Machine

We will be using the icme-gpu cluster with NVIDIA Quadro RTX 6000 GPU. We have provided a
script called hw4.sh in the starter code to help you submit a batch job with proper compute node
configurations. You should run module load cuda once you log into icme-gpu, and you can submit
a batch job using sbatch hw4.sh, which compiles your CUDA code, runs the main executable, and
writes the output to slurm.sh.out. You can modify hw4.sh to run with different arguments.

B Advice and hints

e Make sure you understand what are the parameters of the problem. In particular the difference
between nx and gx is important to understand.

e Spend some time looking at the simParams class as it contains the useful parameters to solve
the problem.

e Keep in mind where your data are when trying to decide kernel parameters. You will be
reading from global memory using Read-Only cache (L1, 128-byte cache lines). Writes to
global memory can not be cached in L1, therefore have to go to the shared L2 cache, which
has 32-byte cache lines).

e Make sure your implementations are able to deal with square grids as well as rectangular
ones.

	
	
	
	
	
	Submission instructions
	Advice and hints

