
Akshay Subramaniam
asubramaniam@nvidia.com

WHAT THE PROFILER IS TELLING YOU:
OPTIMIZING GPU KERNELS

2

BEFORE YOU START

1. Know your hardware

• What are the target machines, how many nodes? Machine-specific optimizations okay?

2. Know your tools

• Strengths and weaknesses of each tool? Learn how to use them (and learn one well!)

3. Know your application

• What does it compute? How is it parallelized? What final performance is expected?

4. Know your process

• Performance optimization is a constant learning process

5. Make it so!

The five steps to enlightenment

3

THE APOD CYCLE

1. Assess
• Identify Performance Limiter
• Analyze Profile
• Find Indicators

2. Parallelize3. Optimize

3b. Build Knowledge

4. Deploy
and Test

4

Scope

GUIDING OPTIMIZATION EFFORT

• Challenge: How to know where to start?

• Top-down Approach:

• Find Hotspot Kernel

• Identify Performance Limiter of the Hotspot

• Find performance bottleneck indicators related to the limiter

• Identify associated regions in the source code

• Come up with strategy to fix and change the code

• Start again

“Drilling Down into the Metrics”

5

KNOW YOUR HARDWARE:
VOLTA ARCHITECTURE

6

VOLTA V100 FEATURES

Volta Architecture

Most Productive GPU

Tensor Core

120 Programmable
TFLOPS Deep Learning

Improved SIMT Model

New Algorithms

Volta MPS

Inference Utilization

Improved NVLink &
HBM2

Efficient Bandwidth

7

GPU COMPARISON

P100 (SXM2) V100 (SXM2)

Double/Single/Half TFlop/s 5.3/10.6/21.2 7.8/15.7/125 (TensorCores)

Memory Bandwidth (GB/s) 732 900

Memory Size 16GB 16GB

L2 Cache Size 4096 KB 6144 KB

Base/Boost Clock (Mhz) 1328/1480 1312/1530

TDP (Watts) 300 300

8

VOLTA SM
GV100 GP100

FP32 Cores 64 64

INT32 Cores 64 0

FP64 Cores 32 32

Register File 256 KB 256 KB

Active Threads 2048 2048

Active Blocks 32 32

Same active threads/warps/blocks on SM

Same amount of registers

Expect similar occupancy, if not limited by shared mem.

10

Shared
Memory

64 KB

L1$
24 KB

L2$
4 MB

Load/Store Units
Pascal SM

L2$
6 MB

Load/Store Units
Volta SM

L1$ and Shared Memory
128 KBLow Latency

Streaming

IMPROVED L1 CACHE

13

INSTRUCTION LATENCY

Dependent instruction issue latency for core FMA operations:

Volta: 4 clock cycles

Pascal: 6 clock cycles

14

TENSOR CORE

Each Tensor Core performs 64 FMA mixed-precision operations per clock

Mixed precision multiplication and accumulation

15

TENSOR CORE

cuBLAS/cuDNN: set TENSOR_OP_MATH

CUDA: nvcuda::wmma API

Example to use tensor core

#include <mma.h>
using namespace nvcuda;
__global__ void wmma_ker(half *a, half *b, float *c) {

wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::row_major> b_frag;
wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag;

wmma::fill_fragment(c_frag, 0.0f);
wmma::load_matrix_sync(a_frag, a, 16);
wmma::load_matrix_sync(b_frag, b, 16);

wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

wmma::store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);
}

16

KNOW YOUR TOOLS:
PROFILERS

18

PROFILING TOOLS

From NVIDIA

Volta, Turing, Ampere and future:
• NVIDIA Nsight Systems

• NVIDIA Nsight Compute

Older generations

• nvprof

• NVIDIA Visual Profiler (nvvp)

• Nsight Visual Studio Edition

Third Party

• TAU Performance System

• VampirTrace

• PAPI CUDA component

• HPC Toolkit

• (Tools using CUPTI)

Many Options!

Without loss of generality, in this talk we will be showing Nsight systems and
compute screenshots

20

Nsight Systems

● Nsight Systems:
nsys profile -o profile_v4_2O ./build/bin/hpgmg-fv 7 8

System level analysis tool (think timeline)

GPU info

CPU info

21

Nsight Compute
Kernel analysis tool (think metrics)

● Nsight Compute:
nv-nsight-cu-cli -o profile_v4_2O \

--launch-count 1 ./build/bin/hpgmg-fv 7 8

30

KNOW YOUR APPLICATION:
HPGMG

31

HPGMG
High-Performance Geometric Multi-Grid, Hybrid Implementation

Fine levels are executed on throughput-optimized processors (GPU)

Coarse levels are executed on latency-optimized processors (CPU)

5/20/2019

G
PU

CPU

THRESHOLD

F-CYCLE
V-CYCLE

DIRECT SOLVE

SMOOTHER
& RESIDUAL

SMOOTHER
& RESIDUAL

SMOOTHER

SMOOTHER

RESTRICTION

IN
TE

RP
OL

AT
IO

N

http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

32

MULTI-GRID BOTTLENECK
Cost of operations

5/20/2019

level

ke
rn

el
 t

im
e

/
to

ta
l t

im
e

MOST TIME SPENT
ON STENCILS

level
ke

rn
el

 t
im

e
/

le
ve

l t
im

e

VOLUME

SURFACE

33

MAKE IT SO:
ITERATION 1

2ND ORDER 7-POINT STENCIL

36

Identify the hotspot: smooth_kernel()

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 2.079ms 1.00x

38

IDENTIFY PERFORMANCE LIMITER

Memory utilization

Compute utilization

39

Memory Utilization vs Compute Utilization

Four possible combinations:

PERFORMANCE LIMITER CATEGORIES

Comp Mem

Compute
Bound

Comp Mem

Bandwidth
Bound

Comp Mem

Latency
Bound

Comp Mem

Compute and
Bandwidth

Bound

42

BANDWIDTH BOUND ON V100

45

DRILLING DOWN: LATENCY ANALYSIS (V100)

The profiler
warns about

low occupancy

Limited by block size of
only 8x4=32 threads

46

OCCUPANCY

Each SM has limited resources:

• max. 64K Registers (32 bit) distributed between threads

• max. 48KB of shared memory per block (96KB per SMM)

• max. 32 Active Blocks per SMM

• Full occupancy: 2048 threads per SM (64 warps)

When a resource is used up, occupancy is reduced

GPU Utilization

(*) Values vary with Compute Capability

47

LATENCY

GPUs cover latencies by having a lot of work in flight

warp 0

warp 1

warp 2

warp 3

warp 4

warp 5

warp 6

warp 7

warp 8

warp 9

The warp issues

The warp waits (latency)

Fully covered latency
warp 0

warp 1

warp 2

warp 3

No warp issues

Exposed latency, not enough warps

48

LATENCY AT HIGH OCCUPANCY

Many active warps but with high latency instructions

The schedulers cannot find eligible warps at every cycle

Exposed latency at high occupancy

No warp issuing

warp 0

warp 1

warp 2

warp 3

warp 4

warp 5

warp 6

warp 7

warp 8

warp 9

49

GLOBAL MEMORY

Basic optimization is the same: Coalescing, Alignment, SOA pattern.

Granularity is 32 bytes, i.e. 8 threads are accessing a continuous 32 byte space.

Latency: what is the occupancy we need to saturate global load/store?

One V100:

BW = 4096 bit * 877Mhz * 2 / 8 = 898 GB/s ~ 1.23x of P100 (theoretical)

SM ratio: 80/56 = 1.43x of P100

HBM2 increase bandwidth from 732 GB/s to 900 GB/s

52

LOOKING FOR MORE INDICATORS

12 Global Load
Transactions per 1 Request

For line numbers use:
nvcc -lineinfo

Source Code
Association

53

MEMORY TRANSACTIONS: BEST CASE

A warp issues 32x4B aligned and consecutive load/store request

Threads read different elements of the same 128B segment

1x L1 transaction: 128B needed / 128B transferred

4x L2 transactions: 128B needed / 128B transferred

1x 128B L1 transaction per warp

4x 32B L2 transactions per warp

1x 128B load/store request per warp

54

MEMORY TRANSACTIONS: WORST CASE
Threads in a warp read/write 4B words, 128B between words

Each thread reads the first 4B of a 128B segment

32x L1 transactions: 128B needed / 32x 128B transferred

32x L2 transactions: 128B needed / 32x 32B transferred

1x 128B L1 transaction per thread

1x 32B L2 transaction per thread

1x 128B load/store request per warpStride: 32x4B thread 2

55

TRANSACTIONS AND REPLAYS

With replays, requests take more time and use more resources

More instructions issued

More memory traffic

Increased execution time

Inst. 0
Issued

Inst. 1
Issued

Inst. 2
Issued

Execution time

Threads
0-7/24-31

Threads
8-15

Threads
16-23

Inst. 0
Completed

Inst. 1
Completed

Inst. 2
Completed

Threads
0-7/24-31

Threads
8-15

Threads
16-23

Transfer data for inst. 0

Transfer data for inst. 1

Transfer data for inst. 2

Extra latencyExtra work (SM)

Extra memory traffic

58

FIX: BETTER GPU TILING

Before

After

Memory
Utilization Up

Transactions Per
Access Down to 9

Kernel Time Speedup

Original Version 2.079ms 1.00x

Better Memory Accesses 1.756ms 1.18x

+10%

Block Size Up from (8,4,1) to (32,4,1)

59

Category: Latency Bound – Occupancy

Problem: Latency is exposed due to low occupancy

Goal: Hide latency behind more parallel work

Indicators: Occupancy low (< 60%)
Execution Dependency High

Strategy: Increase occupancy by:
• Varying block size
• Varying shared memory usage
• Varying register count (use __launch_bounds)

PERF-OPT QUICK REFERENCE CARD

60

Category: Latency Bound – Coalescing

Problem: Memory is accessed inefficiently => high latency

Goal: Reduce #transactions/request to reduce latency

Indicators: Low global load/store efficiency,
High #transactions/#request compared to ideal

Strategy: Improve memory coalescing by:
• Cooperative loading inside a block
• Change block layout
• Aligning data
• Changing data layout to improve locality

PERF-OPT QUICK REFERENCE CARD

61

Category: Bandwidth Bound - Coalescing

Problem: Too much unused data clogging memory system

Goal: Reduce traffic, move more useful data per request

Indicators: Low global load/store efficiency,
High #transactions/#request compared to ideal

Strategy: Improve memory coalescing by:
• Cooperative loading inside a block
• Change block layout
• Aligning data
• Changing data layout to improve locality

PERF-OPT QUICK REFERENCE CARD

62

ITERATION 2: DATA MIGRATION

68

PAGE FAULTS
Details

69

MEMORY MANAGEMENT
Using Unified Memory

No changes to data structures

No explicit data movements

Single pointer for CPU and GPU data

Use cudaMallocManaged for allocations

5/20/2
019

Developer View With
Unified Memory

Unified Memory

70

Solution: allocate the first CPU level with cudaMallocHost (zero-copy memory)

UNIFIED MEMORY
Eliminating page migrations and faults

5/20/2
019

G
PU

CPU

THRESHOLD

F-CYCLE

Page faults

72

PAGE FAULTS
Almost gone

74

PAGE FAULTS
Significant speedup for affected kernel

75

MEM ADVICE API
Not used here

cudaMemPrefetchAsync(ptr, length, destDevice, stream)

 Migrate data to destDevice: overlap with compute
 Update page table: much lower overhead than page fault in kernel
 Async operation that follows CUDA stream semantics

cudaMemAdvise(ptr, length, advice, device)

 Specifies allocation and usage policy for memory region
 User can set and unset at any time

5/20/2019

76

CONCURRENCY THROUGH PIPELINING

Serial

Concurrent– overlap kernel and D2H copy

Use CUDA streams to hide data transfers

K1

K2

K3

K4

cudaMemcpyAsync(H2D) cudaMemcpyAsync(D2H)Kernel<<<>>> time

cudaMemcpyAsync(H2D) DH1

DH2

DH3

DH4
time

performance
improvement

77

ITERATION 3:
REGISTER OPTIMIZATION AND CACHING

80

LIMITER: STILL MEMORY BANDWIDTH

81

SM

Functional Units

Register File

SM

Functional Units

Register File

GPU MEMORY HIERARCHY
V100

Global Memory (Framebuffer)

L2$

Bring reused
data closer to

the SMs

• Registers (256 KB/SM): good for
intra-thread data reuse

• Shared mem / L1$ (128 KB/SM):
good for explicit intra-block data
reuse

• L2$ (6144 KB): implicit data reuse
Shared Memory /

 L1$
Shared Memory /

 L1$

82

CACHING IN REGISTERS
No data loaded initially

5/20/2019

83

CACHING IN REGISTERS
Load first set of data

5/20/2019

load

84

CACHING IN REGISTERS
Perform calculation

5/20/2019

Stencil

85

CACHING IN REGISTERS
Naively load next set of data?

5/20/2019

load

86

CACHING IN REGISTERS
Reusing already loaded data is better

5/20/2019

load
keep
keep

87

CACHING IN REGISTERS
Repeat

5/20/2019

Stencil

Higher register usage may
result in reduced

occupancy => trade off
(run experiments!)

91

THE EFFECT OF REGISTER CACHING
Transactions for cached

loads reduced by a
factor of 8

Memory utilization still
high, but transferring less

redundant data

Kernel Time Speedup

Original Version 2.079ms 1.00x

Better Memory Accesses 1.756ms 1.18x

Register Caching 1.486ms 1.40x

92

SHARED MEMORY
• Programmer-managed cache

• Great for caching data reused across threads in a CTA

• 128KB split between shared memory and L1 cache per SM

• Each block can use at most 96KB shared memory on GV100

• Search for cudaFuncAttributePreferredSharedMemoryCarveout in the docs

__global__ void sharedMemExample(int *d) {
 __shared__ float s[64];
 int t = threadIdx.x;
 s[t] = d[t];
 __syncthreads();
 if(t>0 && t<63)
 stencil[t] = -2.0f*s[t] + s[t-1] + s[t+1];
}

global

global

registers

registers

shared

93

Category: Bandwidth Bound – Register Caching

Problem: Data is reused within threads and memory bw
utilization is high

Goal: Reduce amount of data traffic to/from global mem

Indicators: High device memory usage, latency exposed
Data reuse within threads and small-ish working set
Low arithmetic intensity of the kernel

Strategy: • Assign registers to cache data
• Avoid storing and reloading data (possibly by

assigning work to threads differently)
• Avoid register spilling

PERF-OPT QUICK REFERENCE CARD

94

Category: Latency Bound – Texture Cache

Problem: Load/Store Unit becomes bottleneck

Goal: Relieve Load/Store Unit from read-only data

Indicators: High utilization of Load/Store Unit, pipe-busy stall
reason, significant amount of read-only data

Strategy: Load read-only data through Texture Units:
• Annotate read-only pointers with const __restrict__
• Use __ldg() intrinsic

PERF-OPT QUICK REFERENCE CARD

95

Category: Device Mem Bandwidth Bound – Shared Memory

Problem: Too much data movement

Goal: Reduce amount of data traffic to/from global mem

Indicators: Higher than expected memory traffic to/from global
memory
Low arithmetic intensity of the kernel

Strategy: (Cooperatively) move data closer to SM:
• Shared Memory
• (or Registers)
• (or Constant Memory)
• (or Texture Cache)

PERF-OPT QUICK REFERENCE CARD

96

Category: Shared Mem Bandwidth Bound – Shared Memory

Problem: Shared memory bandwidth bottleneck

Goal: Reduce amount of data traffic to/from global mem

Indicators: Shared memory loads or stores saturate

Strategy: Reduce Bank Conflicts (insert padding)
Move data from shared memory into registers
Change data layout in shared memory

PERF-OPT QUICK REFERENCE CARD

97

ITERATION 4:
KERNELS WITH INCREASED

ARITHMETIC INTENSITY

98

OPERATIONAL INTENSITY

• Operational intensity = arithmetic operations/bytes written and read

• Our stencil kernels have very low operational intensity

• It might be beneficial to use a different algorithm with higher operational intensity.

• In this case this might be achieved by using higher order stencils

99

ILP VS OCCUPANCY

• Earlier we looked at how occupancy helps hide latency by providing independent threads of
execution.

• When our code requires many registers the occupancy will be limited but we can still get
instruction level parallelism inside the threads.

• Occupancy is helpful to achieving performance but not always
required

• Some algorithms such as matrix multiplications allow
increases in operational intensity by using more registers
for local storage while simultaneously offering decent ILP.
In these cases it might be beneficial to maximize ILP and
operational intensity at the cost of occupancy.

a = b + c;
d = e + f;

a = b + c;
d = a + f;

Independent instr.

Dependent instr.

104

STALL REASONS:
EXECUTION DEPENDENCY

Memory accesses may influence execution dependencies

Global accesses create longer dependencies than shared accesses

Read-only/texture dependencies are counted in Texture

Instruction level parallelism can reduce dependencies

a = b + c; // ADD

d = a + e; // ADD

a = b[i]; // LOAD

d = a + e; // ADD

a = b + c; // Independent ADDs
d = e + f;

105

ILP AND MEMORY ACCESSES

#pragma unroll is useful to extract ILP

Manually rewrite code if not a simple loop

float a = 0.0f;
for(int i = 0 ; i < N ; ++i)
 a += logf(b[i]);

c = b[0]

No ILP 2-way ILP (with loop unrolling)

float a, a0 = 0.0f, a1 = 0.0f;
for(int i = 0 ; i < N ; i += 2)
{
 a0 += logf(b[i]);
 a1 += logf(b[i+1]);
}
a = a0 + a1a += logf(c)

c = b[1]

a += logf(c)

c = b[2]

a += logf(c)

c = b[3]

a += logf(c)

c0 = b[0]

a0 += logf(c0)

c0 = b[2]

a0 += logf(c0)

c1 = b[1]

a1 += logf(c1)

c1 = b[3]

a1 += logf(c1)

a = a0 + a1

...

106

Category: Latency Bound – Instruction Level Parallelism

Problem: Not enough independent work per thread

Goal: Do more parallel work inside single threads

Indicators: High execution dependency, increasing occupancy has
no/little positive effect, still registers available

Strategy: • Unroll loops (#pragma unroll)
• Refactor threads to compute n output values at the

same time (code duplication)

PERF-OPT QUICK REFERENCE CARD

107

Category: Compute Bound – Algorithmic Changes

Problem: GPU is computing as fast as possible

Goal: Reduce computation if possible

Indicators: Clearly compute bound problem, speedup only with
less computation

Strategy: • Pre-compute or store (intermediate) results
• Trade memory for compute time
• Use a computationally less expensive algorithm
• Possibly: run with low occupancy and high ILP

PERF-OPT QUICK REFERENCE CARD

108

SUMMARY

109

SUMMARY

1. Know your application

2. Know your hardware

3. Know your tools

4. Know your process

• Identify the Hotspot

• Classify the Performance Limiter

• Look for indicators

5. Make it so!

Performance Optimization is a Constant Learning Process

112

nsys profile -o profile_v4_2O
\

./build/bin/hpgmg-fv 7 8

nv-nsight-cu-cli -o profile_v4_2O \
--kernel-regex ".*smooth_kernel*" \
--launch-count 1 ./build/bin/hpgmg-fv 7

8

113

GUIDING OPTIMIZATION EFFORT

• Challenge: How to know where to start?

• Top-down Approach:

• Find Hotspot Kernel

• Identify Performance Limiter of the Hotspot

• Find performance bottleneck indicators related to the limiter

• Identify associated regions in the source code

• Come up with strategy to fix and change the code

• Start again

“Drilling Down into the Metrics”

Nsight Systems

Nsight Compute

116

REFERENCES
CUDA Documentation

Best Practices: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Volta Tuning Guide: http://docs.nvidia.com/cuda/volta-tuning-guide/

Ampere Tuning Guide: https://docs.nvidia.com/cuda/ampere-tuning-guide/

NVIDIA Developer Blog on HPGMG

https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/

Nsight Tools

https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/volta-tuning-guide/
https://docs.nvidia.com/cuda/ampere-tuning-guide/
https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/

