

WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS

Akshay Subramaniam asubramaniam@nvidia.com

BEFORE YOU START The five steps to enlightenment

- 1. Know your hardware
	- What are the target machines, how many nodes? Machine-specific optimizations okay?
- 2. Know your tools
	- Strengths and weaknesses of each tool? Learn how to use them (and learn one well!)
- 3. Know your application
	- What does it compute? How is it parallelized? What final performance is expected?
- 4. Know your process
	- Performance optimization is a constant learning process
- 5. Make it so!

THE APOD CYCLE

GUIDING OPTIMIZATION EFFORT

"Drilling Down into the Metrics"

- Challenge: How to know where to start?
- Top-down Approach:
	- Find Hotspot Kernel
	- Identify Performance Limiter of the Hotspot
	- Find performance bottleneck indicators related to the limiter
	- Identify associated regions in the source code
	- Come up with strategy to fix and change the code
	- Start again

4

Scope

KNOW YOUR HARDWARE: VOLTA ARCHITECTURE

VOLTA V100 FEATURES

GPU COMPARISON

VOLTA SM

Same active threads/warps/blocks on SM

Same amount of registers

Expect similar occupancy, if not limited by shared mem.

IMPROVED L1 CACHE

INSTRUCTION LATENCY

Dependent instruction issue latency for core FMA operations:

Volta: 4 clock cycles

Pascal: 6 clock cycles

TENSOR CORE

Mixed precision multiplication and accumulation

Each Tensor Core performs 64 FMA mixed-precision operations per clock

TENSOR CORE

Example to use tensor core

cuBLAS/cuDNN: set TENSOR_OP_MATH

CUDA: nvcuda::wmma API

```
#include <mma.h>
using namespace nvcuda;
global void wmma ker(half *a, half *b, float *c) {
     wmma::fragment<wmma::matrix a, 16, 16, 16, half, wmma::col major> a frag;
     wmma::fragment<wmma::matrix b, 16, 16, 16, half, wmma::row major> b frag;
     wmma::fragment<wmma::accumulator, 16, 16, 16, float> c frag;
     wmma::fill fragment(c frag, 0.0f);
     wmma::load matrix sync(a frag, a, 16);
     wmma::load matrix sync(b frag, b, 16);
     wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
     wmma::store matrix sync(c, c frag, 16, wmma::mem row major);
}
```
KNOW YOUR TOOLS: PROFILERS

PROFILING TOOLS

Many Options!

From NVIDIA

- Volta, Turing, Ampere and future: • NVIDIA Nsight Systems
- NVIDIA Nsight Compute

Older generations

- nvprof
- NVIDIA Visual Profiler (nvvp)
- Nsight Visual Studio Edition

Third Party

- TAU Performance System
- VampirTrace
- PAPI CUDA component
- HPC Toolkit
- (Tools using CUPTI)

Without loss of generality, in this talk we will be showing Nsight systems and compute screenshots

Nsight Systems

System level analysis tool (think timeline)

● **Nsight Systems**:

nsys profile -o profile_v4_2O ./build/bin/hpgmg-fv 7 8

Nsight Compute

Kernel analysis tool (think metrics)

● **Nsight Compute**:

nv-nsight-cu-cli -o profile_v4_2O \ --launch-count 1 ./build/bin/hpgmg-fv 7 8

KNOW YOUR APPLICATION: HPGMG

HPGMG

High-Performance Geometric Multi-Grid, Hybrid Implementation

Fine levels are executed on throughput-optimized processors (GPU)

Coarse levels are executed on latency-optimized processors (CPU)

<http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/>

MULTI-GRID BOTTLENECK

Cost of operations

MAKE IT SO: ITERATION 1 2ND ORDER 7-POINT STENCIL

IDENTIFY HOTSPOT

* 82.0% Context 1 -99.1% Kernels ▶ 46.3% smooth kernel ▶ 14.6% copy block kernel ▶ 8.8% zero_vector_kernel ▶ 6.4% restriction_kernel > 5.2% interpolation v2 kernel 5 kernel groups hidden... $-$ ▶ 0.9% Memory

CUDA HW (Tesla V100-SXM2-16GB, 00

Identify the hotspot: smooth_kernel()

IDENTIFY PERFORMANCE LIMITER

Compute utilization

PERFORMANCE LIMITER CATEGORIES

Memory Utilization vs Compute Utilization

Four possible combinations:

BANDWIDTH BOUND ON V100

DRILLING DOWN: LATENCY ANALYSIS (V100)

OCCUPANCY GPU Utilization

Each SM has limited resources:

- max. 64K Registers (32 bit) distributed between threads
- max. 48KB of shared memory per block (96KB per SMM)
- max. 32 Active Blocks per SMM
- Full occupancy: 2048 threads per SM (64 warps)

When a resource is used up, occupancy is reduced

LATENCY

GPUs cover latencies by having a lot of work in flight

The warp waits (latency)

Exposed latency, not enough warps

No warp issues

LATENCY AT HIGH OCCUPANCY

Many active warps but with high latency instructions

GLOBAL MEMORY HBM2 increase bandwidth from 732 GB/s to 900 GB/s

Basic optimization is the same: Coalescing, Alignment, SOA pattern.

Granularity is 32 bytes, i.e. 8 threads are accessing a continuous 32 byte space.

Latency: what is the occupancy we need to saturate global load/store?

One V100:

BW = 4096 bit $*$ 877Mhz $*$ 2 / 8 = 898 GB/s \sim 1.23x of P100 (theoretical)

SM ratio: 80/56 = 1.43x of P100

LOOKING FOR MORE INDICATORS

For line numbers use: nvcc -lineinfo

12 Global Load Transactions per 1 Request

Source Code

MEMORY TRANSACTIONS: BEST CASE

A warp issues 32x4B aligned and consecutive load/store request

Threads read different elements of the same 128B segment

1x L1 transaction: 128B needed / 128B transferred

4x L2 transactions: 128B needed / 128B transferred

MEMORY TRANSACTIONS: WORST CASE

Threads in a warp read/write 4B words, 128B between words

Each thread reads the first 4B of a 128B segment

32x L1 transactions: 128B needed / 32x 128B transferred

32x L2 transactions: 128B needed / 32x 32B transferred

TRANSACTIONS AND REPLAYS

With replays, requests take more time and use more resources

More instructions issued

More memory traffic

Increased execution time

FIX: BETTER GPU TILING Block Size Up from (8,4,1) to (32,4,1)

81

PERF-OPT QUICK REFERENCE CARD

PERF-OPT QUICK REFERENCE CARD

ITERATION 2: DATA MIGRATION

PAGE FAULTS Details

MEMORY MANAGEMENT

Using Unified Memory

No changes to data structures

No explicit data movements

Single pointer for CPU and GPU data

Use **cudaMallocManaged** for allocations

Developer View With Unified Memory

UNIFIED MEMORY Eliminating page migrations and faults

Solution: allocate the first CPU level with cudaMallocHost (zero-copy memory)

PAGE FAULTS Almost gone

PAGE FAULTS Significant speedup for affected kernel

MEM ADVICE API

Not used here

cudaMemPrefetchAsync(ptr, length, destDevice, stream)

 Migrate data to destDevice: overlap with compute Update page table: much lower overhead than page fault in kernel Async operation that follows CUDA stream semantics

cudaMemAdvise(ptr, length, advice, device)

 Specifies allocation and usage policy for memory region User can set and unset at any time

CONCURRENCY THROUGH PIPELINING

Use CUDA streams to hide data transfers

ITERATION 3: REGISTER OPTIMIZATION AND CACHING

LIMITER: STILL MEMORY BANDWIDTH

GPU MEMORY HIERARCHY

V100

- **• Registers (256 KB/SM):** good for intra-thread data reuse
- **• Shared mem / L1\$ (128 KB/SM):** good for explicit intra-block data
- **• L2\$ (6144 KB):** implicit data reuse

No data loaded initially

Load first set of data

Perform calculation

Naively load next set of data?

Reusing already loaded data is better

Repeat

THE EFFECT OF REGISTER CACHING

Transactions for cached loads reduced by a factor of 8

Memory utilization still high, but transferring less redundant data

SHARED MEMORY

- Programmer-managed cache
- Great for caching data reused across threads in a CTA
- 128KB split between shared memory and L1 cache per SM
	- Each block can use at most 96KB shared memory on GV100
	- Search for cudaFuncAttributePreferredSharedMemoryCarveout in the docs

```
global void sharedMemExample(int *d) {
  shared float s[64];
  int t = threadIdx.x;s[t] = d[t];syncthreads();
   if(t>0 && t<63)
     stencil[t] = -2.0f*s[t] + s[t-1] + s[t+1];}
```


ITERATION 4: KERNELS WITH INCREASED ARITHMETIC INTENSITY

OPERATIONAL INTENSITY

- Operational intensity = arithmetic operations/bytes written and read
- Our stencil kernels have very low operational intensity
- It might be beneficial to use a different algorithm with higher operational intensity.
- In this case this might be achieved by using higher order stencils

ILP VS OCCUPANCY

- Earlier we looked at how occupancy helps hide latency by providing independent threads of execution.
- When our code requires many registers the occupancy will be limited but we can still get instruction level parallelism inside the threads.
- Occupancy is helpful to achieving performance but not always required
- Some algorithms such as matrix multiplications allow increases in operational intensity by using more registers for local storage while simultaneously offering decent ILP. In these cases it might be beneficial to maximize ILP and operational intensity at the cost of occupancy.

Dependent instr.

Independent instr.

$$
a = b + c;
$$

$$
d = e + f;
$$

STALL REASONS: EXECUTION DEPENDENCY

Memory accesses may influence execution dependencies

Global accesses create longer dependencies than shared accesses

Read-only/texture dependencies are counted in Texture

Instruction level parallelism can reduce dependencies

 $a = b + c$; // Independent ADDs $d = e + f$;

ILP AND MEMORY ACCESSES

```
float a = 0.0f;
for( int i = 0 ; i < N ; ++i )
  a += logf(b[i]);
   c = b[0]a + = logf(c)   a = a0 + a1c = b[1]a += logf(c)c = b[2]a += \text{logf}(c)c = b[3]a += \text{logf}(c)
```
#pragma unroll is useful to extract ILP Manually rewrite code if not a simple loop

No ILP 2-way ILP (with loop unrolling)

SUMMARY

Performance Optimization is a Constant Learning Process

- 1. Know your application
- 2. Know your hardware
- 3. Know your tools
- 4. Know your process
	- Identify the Hotspot
	- Classify the Performance Limiter
	- Look for indicators
- 5. Make it so!


```
nv-nsight-cu-cli -o profile_v4_2O \
    --kernel-regex ".*smooth_kernel*" \
    --launch-count 1 ./build/bin/hpgmg-fv 7
```
GUIDING OPTIMIZATION EFFORT

"Drilling Down into the Metrics"

- Challenge: How to know where to start?
- Top-down Approach:
	- Find Hotspot Kernel
	- Identify Performance Limiter of the Hotspot
	- Find performance bottleneck indicators related to the limiter Nsight Compute
	- Identify associated regions in the source code
	- Come up with strategy to fix and change the code
	- Start again

t Systems

REFERENCES

CUDA Documentation

Best Practices: <http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/> Volta Tuning Guide:<http://docs.nvidia.com/cuda/volta-tuning-guide/> Ampere Tuning Guide:<https://docs.nvidia.com/cuda/ampere-tuning-guide/> NVIDIA Developer Blog on HPGMG

<https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/>

Nsight Tools

<https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/> <https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/> <https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/>
