

WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS

Akshay Subramaniam asubramaniam@nvidia.com

BEFORE YOU START The five steps to enlightenment

- 1. Know your hardware
 - What are the target machines, how many nodes? Machine-specific optimizations okay?
- 2. Know your tools
 - Strengths and weaknesses of each tool? Learn how to use them (and learn one well!)
- 3. Know your application
 - What does it compute? How is it parallelized? What final performance is expected?
- 4. Know your process
 - Performance optimization is a constant learning process
- 5. Make it so!

THE APOD CYCLE

GUIDING OPTIMIZATION EFFORT

"Drilling Down into the Metrics"

- Challenge: How to know where to start?
- Top-down Approach:
 - Find Hotspot Kernel
 - Identify Performance Limiter of the Hotspot
 - Find performance bottleneck indicators related to the limiter
 - Identify associated regions in the source code
 - Come up with strategy to fix and change the code
 - Start again

Scope

KNOW YOUR HARDWARE: VOLTA ARCHITECTURE

VOLTA V100 FEATURES

GPU COMPARISON

	P100 (SXM2)	V100 (SXM2)
Double/Single/Half TFlop/s	5.3/10.6/21.2	7.8/15.7/125 (TensorCores)
Memory Bandwidth (GB/s)	732	900
Memory Size	16GB	16GB
L2 Cache Size	4096 KB	6144 KB
Base/Boost Clock (Mhz)	1328/1480	1312/1530
TDP (Watts)	300	300

7

VOLTA SM

	GV100	GP100
FP32 Cores	64	64
INT32 Cores	64	0
FP64 Cores	32	32
Register File	256 KB	256 KB
Active Threads	2048	2048
Active Blocks	32	32

Same active threads/warps/blocks on SM

Same amount of registers

Expect similar occupancy, if not limited by shared mem.

М			_				L1 Instruc	tion Cache		_	_			
1								-						_
	ache			L0 Instruction Cache										
	nedule	Concession of the local division of the loca	10000							hread/clk)				
Dispatch Unit (32 thread/clk)								Dispatch Unit (32 thread/clk)						
	Reg	ister	File ('	16,384	4 x 32	l-bit)			Reg	ister	File (1	16,384	4 x 32-bit)	
FP64	INT	INT	FP32	FP32	H			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32 FP32			
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32		SOR	TENSOR	FP64	INT	INT	FP32	FP32	TENSOR	TENSOR
FP64	INT	INT	FP32	FP32	Co	DRE	CORE	FP64	INT	INT	FP32	FP32	CORE	CORE
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU	LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ LD/ ST ST	SFU
		L0 Ir	nstruc	tion C	ache					L0 lr	nstruc	tion C	ache	_
			edule						Wai	rp Sch	edule	r (32 t	hread/clk)	
	Di	spatcl	h Unit	(32 th	read/c	:lk)			Di	spate	h Unit	(32 th	read/clk)	
	Reg	ister	File (*	16,384	4 x 32	-bit)			Reg	ister	File (1	16,384	4 x 32-bit)	
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32		SOR	TENSOR	FP64	INT	INT	FP32	FP32	TENSOR	TENSO
FP64	INT	INT	FP32	FP32	CO	DRE	CORE	FP64	INT	INT	FP32	FP32	CORE	CORE
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32	E			FP64	INT	INT	FP32	FP32		
LD/ LD/	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU	LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ LD/ ST ST	SFU
ST ST					_	_			-	-	_	_		
ST ST						128K	B L1 Data Cac	he / Shared M	emory	1				

IMPROVED L1 CACHE

INSTRUCTION LATENCY

Dependent instruction issue latency for core FMA operations:

Volta: 4 clock cycles

Pascal: 6 clock cycles

TENSOR CORE

Mixed precision multiplication and accumulation

Each Tensor Core performs 64 FMA mixed-precision operations per clock

TENSOR CORE

Example to use tensor core

cuBLAS/cuDNN: set TENSOR_OP_MATH

CUDA: nvcuda::wmma API

```
#include <mma.h>
using namespace nvcuda;
__global__ void wmma_ker(half *a, half *b, float *c) {
    wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
    wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::row_major> b_frag;
    wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag;

    wmma::load_matrix_sync(a_frag, a, 16);
    wmma::load_matrix_sync(b_frag, b, 16);
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
}
```

KNOW YOUR TOOLS: PROFILERS

PROFILING TOOLS

Many Options!

From NVIDIA

- Volta, Turing, Ampere and future:NVIDIA Nsight Systems
- NVIDIA Nsight Compute
- Older generations
 - nvprof
 - NVIDIA Visual Profiler (nvvp)
 - Nsight Visual Studio Edition

Third Party

- TAU Performance System
- VampirTrace
- PAPI CUDA component
- HPC Toolkit
- (Tools using CUPTI)

Without loss of generality, in this talk we will be showing Nsight systems and compute screenshots

Nsight Systems

System level analysis tool (think timeline)

• Nsight Systems:

nsys profile -o profile_v4_20 ./build/bin/hpgmg-fv 7 8

Nsight Compute

Kernel analysis tool (think metrics)

rt × w2 prome_v4.nsignt-cuproi-report × w2 p	profile_v5.nsight-cuprof-r	eport * 🗙 🔬 profile_	v1_20.nsight-cuprof-report >	< 🛍 profile_v2_20.nsi	ght-cuprof-report ×	2 profile_v3_20.nsig	ht-cuprof-report 🗙 拉	profile_v4_20.nsight	-cuprof-report ×
e: Details 👻 Proce <u>s</u> s: All	 <u>Launch</u>: 0 - 10053 	- smooth_kernel	👻 Add Baseline 👻 Appl	y <u>R</u> ules					Copy as Imag
Current 10053 - smooth_kernel (65	5536, 4, 1) Time: :	213.54 usecond Cycle	es: 275,911 Regs: 72 GP	U: Tesla V100-SXM2-16	GGB SM Frequency	1.29 cycle/nsecond	CC: 7.0 Process: [73	542] hpgmg-fv	⊕ ⊖
GPU Speed Of Light								All	- C
h-level overview of the utilization for compute a	nd memory resources of	the GPU. For each uni	it. the Speed Of Light (SOL) r	eports the achieved pe	rcentage of utilization	with respect to the th	heoretical maximum.		
, LSM [%]				Duration [usecond]					213.5
L Memory [%]				Elapsed Cycles [cy					275,91
L TEX [%]				SM Active Cycles [267.155.1
L L2 [%]				SM Frequency [cycl					1.2
L FB [%]				Memory Frequency [865.2
				tilization					
T									
SM [%]									
4emory [%]									
0.0 10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100
									100
	SOL SM Breakdov	vn		eed Of Light [%]		SOL Memory			
SOL SM: Issue Active [%] SOL SM: Inst Executed [%]		vn	5p4 6.36 6.35	eed Of Light [%]					
SOL SM: Issue Active [%]		vn	6.36	SOL GPU: Dram Thi SOL L2: T Sectors [%]				
SOL SM: Issue Active [%] SOL SM: Inst Executed [%]		vn	6.36 6.35	soL GPU: Dram Thi SOL GPU: Dram Thi SOL L2: T Sectors [SOL L2: Lts2xbar C	%] ycles Active [%]				32.26
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed Pipe Lsu [%]		vn	6.36 6.35 4.98	SOL GPU: Dram Thr SOL L2: T Sectors [SOL L2: Lts2xbar C SOL L2: D Sectors F	%] ycles Active [%]				32.26 28.28 23.44
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed Pipe Lsu [%] SOL SM: Mio2rf Writeback Active [%]		vn	6.36 6.35 4.98 4.97	SOL GPU: Dram Thi SOL L2: T Sectors [SOL L2: L52xbar C SOL L2: D Sectors f SOL L1: M Xbar21lt	%] ycles Active [%] ill Device [%] ex Read Sectors [%]				32.26 28.28
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed Pipe Lsu [%] SOL SM: Mio2rf Writeback Active [%] SOL SM: Pipe Shared Cycles Active [%]		vn	6.36 6.35 4.98 4.97 4.72	SOL GPU: Dram Thi SOL L2: T Sectors [SOL L2: T Sectors [SOL L2: L52xbar C SOL L2: D Sectors F SOL L1: M Xbar2lL SOL L2: D Sectors [%] ycles Active [%] iill Device [%] ex Read Sectors [%] %]				32.26 28.28 23.44 21.51 14.87
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed Pipe Lsu [%] SOL SM: Inst Executed Pipe Lsu [%] SOL SM: Mo2rf Writeback Active [%] SOL SM: Pipe Fp64 Cycles Active [%]		vn	6.36 6.35 4.98 4.97 4.72 4.72	SOL GPU: Dram Thi SOL L2: T Sectors [SOL L2: Lts2xbar C SOL L2: D Sectors f SOL L1: M Xbar21ht SOL L2: D Sectors f SOL L2: Xbar21ks C	%] ycles Active [%] iill Device [%] ex Read Sectors [%] %] ycles Active [%]				32.26 28.28 23.44 21.51 14.87 13.64
SOL SM: issue Active [%] SOL SM: inst Executed [%] SOL SM: inst Executed [%] SOL SM: MoZY Wirtback Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Fp64 Cycles Active [%] SOL SM: Pipe Alu Cycles Active [%]		vn	6.36 6.35 4.98 4.97 4.72 4.72 4.72 4.72	SOL GPU: Dram Th SOL L2: T Sectors [SOL L2: T Sectors [SOL L2: D Sectors SOL L2: D Sectors SOL L1: M Xbar2l1t SOL L2: Sectors [SOL L2: Sectors] SOL L2: Xbar2l1s C; SOL L2: Data Pipe [%] ycles Active [%] iill Device [%] ex Read Sectors [%] %] ycles Active [%] .su Wavefronts [%]				32.26 28.28 23.44 21.51 14.87 13.64 11.40
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed Pipe Isu [%] SOL SM: Inst Executed Pipe Isu [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Fip64 Cycles Active [%] SOL SM: Pipe Fip64 Cycles Active [%] SOL SM: Pipe Fina Cycles Active [%]		vn	6.36 6.35 4.99 4.97 4.72 4.72 4.68 2.97	SOL GPU: Dram Thi SOL L2: T Sectors [SOL L2: L2: Sactors [SOL L2: L2: Sactors [SOL L2: D Sectors [SOL L2: D Sectors [SOL L2: Nbar2lts SOL L2: Tag Requ SOL L2: T Tag Requ	%] ycles Active [%] iill Device [%] ex Read Sectors [%] %] ycles Active [%] .su Wavefronts [%]	SOL Memory			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Injc Wirtback Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Pipe Active [%] SOL SM: Pipe Fina Cycles Active [%] SOL SM: Pipe Fina Cycles Active [%] SOL SM: Pipe Int Issued [%]		vn	6.36 6.33 4.98 4.97 4.72 4.72 4.72 4.72 4.72 4.72 2.97 2.51	SOL GPU: Dram Th SOL L2: T Sectors [SOL L2: L5:2xbar C SOL L2: D Sectors [SOL L1: M Xbar2llt SOL L2: Xbar2lts Cy SOL L2: Xbar2lts Cy SOL L2: Tag Requ SOL L1: M L1tex2xl	%] ycles Active [%] ill Device [%] ex Read Sectors [%] %] ycles Active [%] sests [%] par Req Cycles Active	SOL Memory			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Injet Shared Cycles Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Find Cycles Active [%] SOL SM: Pipe Find Cycles Active [%] SOL SM: Pipe Alu Cycles Active [%] SOL SM: Mio Pipe Active [%] SOL SM: Mio Pipe Read Cycles Active [%] SOL SM: Mio Pipe Read Cycles Active [%] SOL SM: Mio Pipe Arecuted Pipe Chur Ped On Any [%]	SOL SM Breakdov	vn	6.36 6.35 4.98 4.97 4.72 4.72 4.72 4.72 4.72 4.68 2.97 2.51 0.65 0.59 0.15	SOL CPU: Dram Th SOL L2: T Sectors [SOL L2: T Sectors [SOL L2: L2: Soctors [SOL L2: L2: Soctors [SOL L2: L2: D Sectors [SOL L2: Nav21b; SOL L2: Nav21b; SOL L2: Nav21b; SOL L1: Shar21b; SOL L1: Shar21b; SOL L1: Suin Requ SOL L1: Lsuin Requ	%] vcles Active [%] ill Device [%] ex Read Sectors [%] %] vcles Active [%] uests [%] uests [%] par Req Cycles Active ack Active [%] ests [%]	SOL Memory			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98
SOL SM: Insue Active [%] SOL SM: Inst Executed Pipe Isu [%] SOL SM: Inst Executed Pipe Isu [%] SOL SM: Nico2T Writeback Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Pied Cycles Active [%] SOL SM: Pipe Inst Cycles Active [%] SOL SM: Pipe Inst Cycles Active [%] SOL SM: Nico Pipe Active [%] SOL SM: Nico Pipe Active [%] SOL SM: Inst Executed Pipe Active [%] SOL SM: Inst Executed Pipe Active [%]	SOL SM Breakdov	vn	6.36 6.35 4.99 4.97 4.72 4.72 4.68 2.97 2.51 0.65 0.59 0.59 0.15	SOL CPU: Dram Thi SOL CPU: Dram Thi SOL L2: T Sectors [SOL L2: LS2xbar C SOL L2: D Xbar2lt SOL L2: N Xbar2lt SOL L2: N Xbar2lt SOL L2: Xbar2lts C SOL L2: T Jag Requ SOL L2: T Jag Requ SOL L1: LSU Writeb SOL L1: LSU Writeb SOL L1: LSU Mrebu SOL L1: LSU Requ SOL L1: LSU Requ	%] ycles Active [%] iill Device [%] we Read Sectors [%] %] ycles Active [%] usu Wavefronts [%] ests [%] par Req Cycles Active ack Active [%] Reads [%]	SOL Memory			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Nicz Wirtback Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe FR64 Cycles Active [%] SOL SM: Pipe FR64 Cycles Active [%] SOL SM: Pipe Read Cycles Active [%] SOL SM: Mio Pa Read Cycles Active [%] SOL SM: Mio Pa Read Cycles Active [%] SOL SM: Mio Pa Read Cycles Active [%] SOL SM: Inst Executed Pipe Chu Fred On Any [5 SOL SM: Inst Executed Pipe Ku [%] SOL SM: Inst Executed Pipe Au [%]	SOL SM Breakdov	vn	6.36 6.35 4.98 4.97 4.72 4.72 4.72 4.72 2.97 2.97 2.97 2.93 0.65 0.59 0.55 0.59 0.15 0.7 0.07	SOL CPU: Dram Th SOL L2: T Sectors I SOL L2: T Sectors I SOL L2: D Sectors I SOL L2: M Xbar2hit SOL L2: M Xbar2hit SOL L2: Nar2hs C SOL L1: M Xbar2hs C SOL L1: M Xbar2hs C SOL L1: M Xbar2hs C SOL L1: M L1texXM SOL L1: Lsuin Requ SOL L1: Lsuin Requ SOL L1: Data Bank SOL L1: Data Bank	%] vcles Active [%] ex Read Sectors [%] %] vcles Active [%] su Wavefronts [%] lests [%] par Req Cycles Active ack Active [%] ests [%] Reads [%] Writes [%]	SOL Memory			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31 2.99
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Injee Fp64 Cycles Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Fp64 Cycles Active [%] SOL SM: Pipe Inst Cycles Active [%] SOL SM: Pipe Inst Cycles Active [%] SOL SM: Mio Pq Read Cycles Active [%] SOL SM: Mio Pq Read Cycles Active [%] SOL SM: Inst Escuel Pipe Cycles Active [%] SOL SM: Inst Executed Pipe Cycles Active [%] SOL SM: Inst Executed Pipe Active [%] SOL SM: Inst Executed Pipe Active [%] SOL DID: Request Cycles Active [%]	SOL SM Breakdov	vn	6.36 6.35 4.99 4.97 4.72 4.72 4.72 4.72 2.97 2.51 0.65 0.59 0.15 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	SOL GPU: Dram Thi SOL L2: T Sectors I SOL L2: T Sectors I SOL L2: A Xbar2lt SOL L2: T Tag Requ SOL L1: A UItex2XI SOL L1: L3U Writeb SOL L1: L3U Requ SOL L1: Data Bank SOL L1: Data Bank SOL L1: Data Bank SOL L1: Data Bank	%) ycles Active [%] ill Device [%] ex Read Sectors [%] %] ycles Active [%] usu Wavefronts [%] par Req Cycles Active ack Active [%] Reads [%] Writes [%] ex Req Cycles Active	SOL Memory			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31 2.99 0.00
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Not ZM: Wirtback Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Pipe Cycles Active [%] SOL SM: Pipe Pipe Cycles Active [%] SOL SM: Nio Pipe Active SACtive [%] SOL SM: Nio Pipe Active SACtive [%] SOL SM: Nio Pipe Read Cycles Active [%] SOL SM: Nio Pi Read Cycles Active [%] SOL SM: Inst Executed Pipe Chu Pred On Any [\$ SOL SM: Inst Executed Pipe Active [%] SOL SM: Inst Executed Pipe Active [%]	SOL SM Breakdov	vn	6.36 6.35 4.98 4.97 4.72 4.72 4.72 4.72 4.72 2.51 0.55 0.55 0.55 0.55 0.77 0.07 0.07 0.07	SOL L1: Data Bank SOL L2: T Sectors [SOL L2: T Sectors [SOL L2: L5:Zxbar C SOL L2: D Sectors [SOL L2: Xbar2l1s SOL L2: Xbar2l1s SOL L2: Xbar2l1s C SOL L1: Data Pipel SOL L1: Mar2l1s SOL L1: Sub 2015 SOL L1: Sub Writeb SOL L1: L1: Writeb SOL L1: Data Bank SOL L1: Data Bank SOL L1: Data Bank SOL L1: Texin Sm21	%) (cles Active (%) (iil Device (%) ex Read Sectors (%) %) (cles Active (%) (cles Active (%) (cles Active (%) exts (%) exts (%) (writes (%) (xeads (%)	(%)			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31 2.99 0.00 0.00
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Ingt Executed [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Fina Cycles Active [%] SOL SM: Pipe Fina Cycles Active [%] SOL SM: Mio Pipe Alu Cycles Active [%] SOL SM: Inst Executed Pipe Au [%] SOL SM: Inst Executed Pipe Tae [%] SOL SM: Inst Executed Pipe Tae [%]	SOL SM Breakdov	vn	6.36 6.35 4.98 4.97 4.72 4.72 4.72 4.68 2.97 2.51 0.65 0.59 0.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	SOL GPU: Dram Th SOL L2: T Sectors [SOL L2: T Sectors [SOL L2: D Sectors] SOL L2: D Sectors [SOL L1: D Sectors] SOL L1: L3 W Arteb SOL L1: L3 W Arteb SOL L1: D L3 B Bank SOL L1: D L3 B Bank SOL L1: Texin Sm21 SOL L1: F Waveforo SOL L1: P A tomic in	%) "II Device (%) #II Device (%) ex Read Sectors (%) %) vcles Active (%) ests (%) mar Req Cycles Active ests (%) Reads (%) Writes (%) ex Req Cycles Active (%) ex Req Cycles Active (%)	(%)			23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31 2.99 0.00 0.00 0.00
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Piped Cycles Active [%] SOL SM: Pipe Alu Cycles Active [%] SOL SM: Pipe Anu Cycles Active [%] SOL SM: Pipe Anu Cycles Active [%] SOL SM: Min Pa Read Cycles Active [%] SOL SM: Min Pa Read Cycles Active [%] SOL SM: Inst Executed Pipe Tex [%]	SOL SM Breakdov	vn	6.36 6.35 4.99 4.97 4.72 4.72 4.72 4.72 2.51 0.65 0.59 0.59 0.59 0.59 0.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	SOL GPU: Dram Thi SOL L2: T Sectors [SOL L2: T Sectors [SOL L2: L52xbar C SOL L2: D Sectors 1 SOL L2: M Xbar2l1 SOL L2: M Xbar2l1 SOL L2: Xbar2lts C SOL L2: T Jac Pipe I SOL L2: L1: Lsui Requ SOL L1: D L1: Data Bank SOL L1: Pata Ison SOL L2: Soctors I SOL L2: D Sectors I SOL L2: D Sectors I	%)	(%)			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31 2.99 0.00 0.00 0.00 0 0
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Ingt Executed [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Fina Cycles Active [%] SOL SM: Pipe Fina Cycles Active [%] SOL SM: Mio Pipe Alu Cycles Active [%] SOL SM: Inst Executed Pipe Au [%] SOL SM: Inst Executed Pipe Tae [%] SOL SM: Inst Executed Pipe Tae [%]	SOL SM Breakdov	vn	6.36 6.35 4.98 4.97 4.72 4.72 4.72 4.68 2.97 2.51 0.65 0.59 0.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	SOL CPU: Dram Th SOL L2: T Sectors I SOL L2: T Sectors I SOL L2: D Sectors I SOL L1: Data Pipel SOL L1: Data Pipel SOL L1: Data Pipel SOL L1: Data Bank SOL L1: Data Bank SOL L1: Data Bank SOL L1: Pavin Sm2 SOL L1: P Wavefror SOL L2: D Atomic In SOL L2: D Sectors I SOL L2: D Sectors I SOL L2: D Sectors I	%] "Ill Device [%] Ill Device [%] will Device [%] will and Sectors [%] %] (cles Active [%] su Wavefronts [%] sets [%] par Req Cycles Active sets [%] Writes [%] put Cycles Active [%] ill Sysmem [%] ack Active [%]	(%)			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31 2.99 0.00 0.00 0.00 0 0 0 0
SOL SM: Issue Active [%] SOL SM: Inst Executed [%] SOL SM: Inst Executed [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Shared Cycles Active [%] SOL SM: Pipe Piped Cycles Active [%] SOL SM: Pipe Alu Cycles Active [%] SOL SM: Pipe Anu Cycles Active [%] SOL SM: Pipe Anu Cycles Active [%] SOL SM: Min Pa Read Cycles Active [%] SOL SM: Min Pa Read Cycles Active [%] SOL SM: Inst Executed Pipe Tex [%]	SOL SM Breakdov	vn	6.36 6.35 4.99 4.97 4.72 4.72 4.72 4.72 2.51 0.65 0.59 0.59 0.59 0.59 0.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	SOL CPU: Dram Th SOL L2: T Sectors I SOL L2: T Sectors I SOL L2: D Sectors I SOL L1: Data Pipel SOL L1: Data Pipel SOL L1: Data Pipel SOL L1: Data Bank SOL L1: Data Bank SOL L1: Data Bank SOL L1: Pavin Sm2 SOL L1: P Wavefror SOL L2: D Atomic In SOL L2: D Sectors I SOL L2: D Sectors I SOL L2: D Sectors I	%)	(%)			32.26 28.28 23.44 21.51 14.87 13.64 11.40 11.08 10.47 10.20 4.98 4.31 2.99 0.00 0.00 0.00 0 0

• Nsight Compute:

nv-nsight-cu-cli -o profile_v4_20 \
 --launch-count 1 ./build/bin/hpgmg-fv 7 8

KNOW YOUR APPLICATION: HPGMG

HPGMG

High-Performance Geometric Multi-Grid, Hybrid Implementation

Fine levels are executed on throughput-optimized processors (GPU)

Coarse levels are executed on latency-optimized processors (CPU)

http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

MULTI-GRID BOTTLENECK

Cost of operations

MAKE IT SO: ITERATION 1 2ND ORDER 7-POINT STENCIL

IDENTIFY HOTSPOT

- CUDA HW (Tesla V100-SXM2-16GB, 00
- 82.0% Context 1
- 99.1% Kernels
- 46.3% smooth_kernel
- 14.6% copy_block_kernel
- 8.8% zero_vector_kernel
- 6.4% restriction_kernel
- 5.2% interpolation_v2_kernel

-

- 5 kernel groups hidden...
- > 0.9% Memory

Identify the hotspot: smooth_kernel()

Kernel	Time	Speedup
Original Version	2.079ms	1.00x

IDENTIFY PERFORMANCE LIMITER

Compute utilization

PERFORMANCE LIMITER CATEGORIES

Memory Utilization vs Compute Utilization

Four possible combinations:

BANDWIDTH BOUND ON V100

DRILLING DOWN: LATENCY ANALYSIS (V100)

OCCUPANCY GPU Utilization

Each SM has limited resources:

- max. 64K Registers (32 bit) distributed between threads
- max. 48KB of shared memory per block (96KB per SMM)
- max. 32 Active Blocks per SMM
- Full occupancy: 2048 threads per SM (64 warps)

When a resource is used up, occupancy is reduced

LATENCY

GPUs cover latencies by having a lot of work in flight

The warp waits (latency)

Exposed latency, not enough warps

No warp issues

LATENCY AT HIGH OCCUPANCY

Many active warps but with high latency instructions

GLOBAL MEMORY HBM2 increase bandwidth from 732 GB/s to 900 GB/s

Basic optimization is the same: Coalescing, Alignment, SOA pattern.

Granularity is 32 bytes, i.e. 8 threads are accessing a continuous 32 byte space.

Latency: what is the occupancy we need to saturate global load/store?

One V100:

BW = 4096 bit * 877Mhz * 2 / 8 = 898 GB/s ~ 1.23x of P100 (theoretical)

SM ratio: 80/56 = 1.43x of P100

LOOKING FOR MORE INDICATORS

					Association		
73	#ifdef USE_CHEBY	98 00007ff 99 00007ff	IMAD.X R35, RI	0	65,536 65,536 Global Load 64		705 122
74	const double c1 = c[s%CHEBYSHEV_DEGREE];		LDG.E.64.CONSI (S R28, [R52]	182		393,216	786,432
75	const double c2 = d[s%CHEBYSHEV_DEGREE];	100 00007ff	IADD3 R36, P0, R10, R37, RZ		65,536		
76	#elif USE_GSRB	101 00007ff	LDG.E.64.CONSTANT.SYS R30, [R38+0x8]	164	65,536 Global Load 64	393,216	786,432
77	const int color000 = (level.my_boxes[box].low.i^level.my_boxes[box].low.j^level.m	102 00007ff	IMAD.X R37, R11, 0x1, R33, P0	2	65,536		
78	#endif	103 00007ff	IADD3 R41, P0, R47, R6, RZ	0	65,536		
79	///////////////////////////////////////	104 00007ff	LDG.E.64.CONSTANT.SYS R32, [R52+0x8]	145	65,536 Global Load 64	393,216	786,432
80		105 00007ff	LDG.E.64.CONSTANT.SYS R34, [R34]	205	65,536 Global Load 64	393,216	786,432
81		106 00007ff	LEA.HI.X.SX32 R48, R47, R42, 0x1, P0	0	65,536		
82	for(int k=0; k <kdim; k++){<="" td=""><td>107 00007ff</td><td>LEA R40, P0, R41, R18, 0x3</td><td>1</td><td>65,536</td><td></td><td></td></kdim;>	107 00007ff	LEA R40, P0, R41, R18, 0x3	1	65,536		
83	<pre>const int ijk = threadIdx.x + threadIdx.y*jStride + k*kStride;</pre>	108 00007ff	LDG.E.64.CONSTANT.SYS R36, [R36]	140	65,536 Global Load 64	393,216	786,432
84	constrant tjr = tin cadadata (tin cadadat) ji name o name,	109 00007ff	LEA.HI.X R41, R41, R19, R48, 0x3, P0	1	65,536		
85		110 00007ff	IADD3 R38, P0, R10, R51, RZ	1	65,536		
86	// apply operator	111 00007ff	IMAD.X R39, R11, 0x1, R49, P0	3	65,536		
00		112 00007ff	LDG.E.64.CONSTANT.SYS R40, [R40]	250	65,536 Global Load 64	393,216	786,432
87	const double Ax = apply_op_ijk();	> 113 00007ff	LDG.E.64.CONSTANT.SYS R38, [R38]	219	65,536 Global Load 64	393,216	786,432
88		114 00007ff	IMAD.IADD R53, R3, 0x1, R46	0	65,536		
89		115 00007ff	DADD R26, -R24, R26	5,475			
90	//////////////////////////////////////	115 00007ff	DMUL R26, R26, R28	570	65,536		
_01	Hifdof HCE CHERV	210 0000711	UNUL N20; N20; N20				

For line numbers use: nvcc -lineinfo

12 Global Load Transactions per 1 Request

Source Code

MEMORY TRANSACTIONS: BEST CASE

A warp issues 32x4B aligned and consecutive load/store request

Threads read different elements of the same 128B segment

1x L1 transaction: 128B needed / 128B transferred

4x L2 transactions: 128B needed / 128B transferred

MEMORY TRANSACTIONS: WORST CASE

Threads in a warp read/write 4B words, 128B between words

Each thread reads the first 4B of a 128B segment

32x L1 transactions: 128B needed / 32x 128B transferred

32x L2 transactions: 128B needed / 32x 32B transferred

TRANSACTIONS AND REPLAYS

With replays, requests take more time and use more resources

More instructions issued

More memory traffic

Increased execution time

FIX: BETTER GPU TILING Block Size Up from (8,4,1) to (32,4,1)

83

PERF-OPT QUICK REFERENCE CARD

Category:	Latency Bound – Occupancy
Problem:	Latency is exposed due to low occupancy
Goal:	Hide latency behind more parallel work
Indicators:	Occupancy low (< 60%) Execution Dependency High
Strategy:	 Increase occupancy by: Varying block size Varying shared memory usage Varying register count (uselaunch_bounds)

PERF-OPT QUICK REFERENCE CARD

Category:	Latency Bound – Coalescing
Problem:	Memory is accessed inefficiently => high latency
Goal:	Reduce #transactions/request to reduce latency
Indicators:	Low global load/store efficiency, High #transactions/#request compared to ideal
Strategy:	 Improve memory coalescing by: Cooperative loading inside a block Change block layout Aligning data Changing data layout to improve locality

Category:	Bandwidth Bound - Coalescing
Problem:	Too much unused data clogging memory system
Goal:	Reduce traffic, move more <u>useful</u> data per request
Indicators:	Low global load/store efficiency, High #transactions/#request compared to ideal
Strategy:	 Improve memory coalescing by: Cooperative loading inside a block Change block layout Aligning data Changing data layout to improve locality

ITERATION 2: DATA MIGRATION

PAGE FAULTS Details

 Threads (10) 				20		
∽ 🗸 [71981] hpgmg-fv →		r	[N1		T T	
NVTX		1 1 1 1 1 1	1 1 1 1 1	main [9.497 s		
CUDA API	cudaDeviceSynchronize	uda	cu	cuda	cudaDeviceSync	cudaDeviceSynchronize
Profiler overhead						
✔ [71988] hpgmg-fv -				. III. 1		
✔ [71987] hpgmg-fv -		l'and a				
✔ [71989] hpgmg-fv -		N.			التفاقي المتعاد	
6 threads hidden –+						
 CUDA HW (Tesla V100-SXM2-16GB) 		1	1991 1 1991 1 111	THE REAL PROPERTY.	98 T 17 000 T	10 IT 11
 76.1% Context 1 						
> 99.3% Kernels	smoo) [smooth] [resid]	(r				(smoot) (smooth) (smoot)
0.7% Memory						
NVTX				main [9.172 s	5]	
 23.9% Unified memory 						
▶ [All Streams]	smoo) (smooth) (resid)	اا این				Ji Iz 13
• 100.0% Memory		later)		wan n welt	an an an	dhu u
85.9% HtoD transfer		l atus	rida is bit.	ada n. n. 191	ali z na dal	dhu d
14.1% DtoH transfer		ii I			1. L	

MEMORY MANAGEMENT

Using Unified Memory

No changes to data structures

No explicit data movements

Single pointer for CPU and GPU data

Use cudaMallocManaged for allocations

Developer View With Unified Memory

UNIFIED MEMORY Eliminating page migrations and faults

Solution: allocate the first CPU level with cudaMallocHost (zero-copy memory)

PAGE FAULTS Almost gone

 Threads (10) 							
🕶 🗸 [72780] hpgmç-							
NVTX	i i én é én a én a fra én é dans		main [9.120 s]		1 1 1 1 1 1 1 1	
CUDA API	cudaDeviceSynchronize	cu) [cud]			aDeviceSynch)	cuda	DeviceSynchronize
Profiler overhead	cudaDeviceSynchronize	cu	find finan	i	abevices ynch	Cuuar	DeviceSynchronize
		-					
🖌 [72786] hpgm(-							
✔ [72788] hpgm(+							
V [72700] hpgm		1 1	1 1			1 1 1	
🖌 [72787] hpgm‹-							
6 threads hidd€ — ╋		1 1	K L	1 1 1	1	1 1	
- CUDA HW (Tesla V1							
▼ 78.1% Context 1							
🕨 99.3% Kernels 蜜	smooth_ker] smooth_kernel [residual]	🗋 a	Trian Terristati	hummer Development			(i) [smooth_kernel]
▶ 0.7% Memory							
NVTX			main [8.801 s]			
▼ 21.9% Unified men	_						
- 100.0% Memory							
87.3% HtoD tran							
12.7% DtoH tran							

PAGE FAULTS Significant speedup for affected kernel

interpolation_v2_kernel	interpolation_v2_kernel
Begins: 8.64297s	Begins: 8.64251s
Ends: 8.64332s (+355.133 μ s) grid: <<<1, 1, 16>>> block: <<<16, 4, 1>>> Launch Type: Regular Static Shared Memory: 0 bytes Dynamic Shared Memory: 0 bytes Registers Per Thread: 48 Local Memory Per Thread: 0 bytes Local Memory Total: 94,371,840 bytes Shared Memory executed: 0 bytes Shared Memory Bank Size: 4 B Theoretical occupancy: 62.5 % Launched from thread: 71981 Latency: \leftarrow 17.710 μ s Correlation ID: 4975 Stream: Default stream (7)	Ends. 0.642 (+50.719 µs) grid: <<<1, 1, 16>>> block: <<<16, 4, 1>>> Launch Type: Regular Static Shared Memory: 0 bytes Dynamic Shared Memory: 0 bytes Registers Per Thread: 48 Local Memory Per Thread: 0 bytes Local Memory Total: 94,371,840 bytes Shared Memory Bank Size: 4 B Ion Theoretical occupancy: 62.5 % Launched from thread: 72780 Latency: ←14.373 µs Correlation ID: 6361 Stream: Default stream (7)

MEM ADVICE API

Not used here

cudaMemPrefetchAsync(ptr, length, destDevice, stream)

Migrate data to destDevice: overlap with compute Update page table: much lower overhead than page fault in kernel Async operation that follows CUDA stream semantics

cudaMemAdvise(ptr, length, advice, device)

Specifies allocation and usage policy for memory region User can set and unset at any time

CONCURRENCY THROUGH PIPELINING

Use CUDA streams to hide data transfers

ITERATION 3: REGISTER OPTIMIZATION AND CACHING

LIMITER: STILL MEMORY BANDWIDTH

GPU MEMORY HIERARCHY

V100

- Registers (256 KB/SM): good for intra-thread data reuse
- Shared mem / L1\$ (128 KB/SM): good for explicit intra-block data reuse
- L2\$ (6144 KB): implicit data reuse

No data loaded initially

Load first set of data

Perform calculation

Naively load next set of data?

Reusing already loaded data is better

Repeat

THE EFFECT OF REGISTER CACHING

436 0000713	SHF.L.U64.H1 K31, K0, 0X3, K31	1	16,384		
437 00007f3	IADD3 R6, P1, R22, R25, RZ	0	16,384		
438 00007f3	LDG.E.64.CONSTANT.SYS R34, [R34]	0	16,384 Global Load 64	49,152	147,456
439 00007f3	IMAD.X R43, R21, 0x1, R7, P0	0	16,384		
440 00007f3	LDG.E.64.CONSTANT.SYS R28, [R28]	1	16,384 Global Load 64	49,152	147,456
441 00007f3…	IMAD.X R7, R23, 0x1, R31, P1	0	16,384		
442 00007f3	IADD3 R24, P0, R18, R25, RZ	0	16,384		
443 00007f3	LDG.E.64.CONSTANT.SYS R26, [R42]	Θ	16,384 Global Load 64	49,152	147,456
444 00007f3	IMAD.X R25, R19, 0x1, R31, P0	Θ	16,384		
445 00007f3	LDG.E.64.CONSTANT.SYS R44, [R6]	1	16,384 Global Load 64	49,152	147,456
446 00007f3		6	16,384 Global Load 64	49,152	147,456
447 00007f3	IMAD.IADD R51, R62, 0x1, R54	0	16,384		
448 00007f3	DADD R32, R32, -R12	156	16,384		
449 00007f3	DMUL R32, R34, R32	536	16,384		
450 00007f3	IMAD.IADD R35, R61, 0x1, R54	1	16,384		
451 00007f2	DADD 020 020 012	2	16.384		

Transactions for cached loads reduced by a factor of 8

Memory utilization still high, but transferring less redundant data

Kernel	Time	Speedup
Original Version	2.079ms	1.00x
Better Memory Accesses	1.756ms	1.18x
Register Caching	1.486ms	1.40x

SHARED MEMORY

- Programmer-managed cache
- Great for caching data reused across threads in a CTA
- 128KB split between shared memory and L1 cache per SM
 - Each block can use at most 96KB shared memory on GV100
 - Search for cudaFuncAttributePreferredSharedMemoryCarveout in the docs

```
__global__ void sharedMemExample(int *d) {
    __shared__ float s[64];
    int t = threadIdx.x;
    s[t] = d[t];
    __syncthreads();
    if(t>0 && t<63)
        stencil[t] = -2.0f*s[t] + s[t-1] + s[t+1];
}</pre>
```


Category:	Bandwidth Bound – Register Caching
Problem:	Data is reused within threads and memory bw utilization is high
Goal:	Reduce amount of data traffic to/from global mem
Indicators:	High device memory usage, latency exposed Data reuse within threads and small-ish working set Low arithmetic intensity of the kernel
Strategy:	 Assign registers to cache data Avoid storing and reloading data (possibly by assigning work to threads differently) Avoid register spilling

Problem:Load/Store Unit becomes bottleneckGoal:Relieve Load/Store Unit from read-only dataIndicators:High utilization of Load/Store Unit, pipe-busy stall reason, significant amount of read-only data	Category:	Latency Bound – Texture Cache
Indicators: High utilization of Load/Store Unit, pipe-busy stall	Problem:	Load/Store Unit becomes bottleneck
	Goal:	Relieve Load/Store Unit from read-only data
	Indicators:	
Strategy: Load read-only data through Texture Units: • Annotate read-only pointers with constrestrict • Useldg() intrinsic	Strategy:	 Annotate read-only pointers with constrestrict

Category:	Device Mem Bandwidth Bound – Shared Memory
Problem:	Too much data movement
Goal:	Reduce amount of data traffic to/from global mem
Indicators:	Higher than expected memory traffic to/from global memory Low arithmetic intensity of the kernel
Strategy:	 (Cooperatively) move data closer to SM: Shared Memory (or Registers) (or Constant Memory) (or Texture Cache)

Category:	Shared Mem Bandwidth Bound – Shared Memory
Problem:	Shared memory bandwidth bottleneck
Goal:	Reduce amount of data traffic to/from global mem
Indicators:	Shared memory loads or stores saturate
Strategy:	Reduce Bank Conflicts (insert padding) Move data from shared memory into registers Change data layout in shared memory

ITERATION 4: KERNELS WITH INCREASED ARITHMETIC INTENSITY

OPERATIONAL INTENSITY

- Operational intensity = arithmetic operations/bytes written and read
- Our stencil kernels have very low operational intensity
- It might be beneficial to use a different algorithm with higher operational intensity.
- In this case this might be achieved by using higher order stencils

ILP VS OCCUPANCY

- Earlier we looked at how occupancy helps hide latency by providing independent threads of execution.
- When our code requires many registers the occupancy will be limited but we can still get instruction level parallelism inside the threads.
- Occupancy is helpful to achieving performance but not always required
- Some algorithms such as matrix multiplications allow increases in operational intensity by using more registers for local storage while simultaneously offering decent ILP. In these cases it might be beneficial to maximize ILP and operational intensity at the cost of occupancy.

Dependent instr.

Independent instr.

STALL REASONS: EXECUTION DEPENDENCY

Memory accesses may influence execution dependencies

Global accesses create longer dependencies than shared accesses

Read-only/texture dependencies are counted in Texture

Instruction level parallelism can reduce dependencies

a = b + c; // Independent ADDs
d = e + f;

ILP AND MEMORY ACCESSES

No ILP

#pragma unroll is useful to extract ILP
Manually rewrite code if not a simple loop

2-way ILP (with loop unrolling)

Category:	Latency Bound – Instruction Level Parallelism
Problem:	Not enough independent work per thread
Goal:	Do more parallel work inside single threads
Indicators:	High execution dependency, increasing occupancy has no/little positive effect, still registers available
Strategy:	 Unroll loops (#pragma unroll) Refactor threads to compute n output values at the same time (code duplication)

Category:	Compute Bound – Algorithmic Changes
Problem:	GPU is computing as fast as possible
Goal:	Reduce computation if possible
Indicators:	Clearly compute bound problem, speedup only with less computation
Strategy:	 Pre-compute or store (intermediate) results Trade memory for compute time Use a computationally less expensive algorithm Possibly: run with low occupancy and high ILP

SUMMARY

Performance Optimization is a Constant Learning Process

- 1. Know your application
- 2. Know your hardware
- 3. Know your tools
- 4. Know your process
 - Identify the Hotspot
 - Classify the Performance Limiter
 - Look for indicators
- 5. Make it so!

GUIDING OPTIMIZATION EFFORT

"Drilling Down into the Metrics"

- Challenge: How to know where to start?
- Top-down Approach:
 - Find Hotspot Kernel
 - Identify Performance Limiter of the Hotspot
 - Find performance bottleneck indicators related to the limiter \rangle Nsight Compute
 - Identify associated regions in the source code
 - Come up with strategy to fix and change the code
 - Start again

Nsight Systems

REFERENCES

CUDA Documentation

Best Practices: <u>http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/</u> Volta Tuning Guide: <u>http://docs.nvidia.com/cuda/volta-tuning-guide/</u> Ampere Tuning Guide: <u>https://docs.nvidia.com/cuda/ampere-tuning-guide/</u> NVIDIA Developer Blog on HPGMG

https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/

Nsight Tools

https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/ https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/ https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/

