<ANVIDIA. ¢

WHAT THE PROFILER IS TELLING YOU:
OPTIMIZING GPU KERNELS . -

Akshay Subramaniam "
asubramaniam@nvidia.com




BEFORE YOU START

Know your hardware

What are the target machines, how many nodes? Machine-specific optimizations okay?
Know your tools

Strengths and weaknesses of each tool? Learn how to use them (and learn one well!)
Know your application

What does it compute? How is it parallelized? What final performance is expected?
Know your process

Performance optimization is a constant learning process

Make it so!

2 NVIDIA.



THE APOD CYCLE

4. Deploy 1. Assess
and Test

 |dentify Performance Limiter
« Analyze Profile
« Find Indicators

3. Optimize | 2. Parallelize

3b. Build Knowledge% 2



GUIDING OPTIMIZATION EFFORT

“Drilling Down into the Metrics”

Challenge: How to know where to start?

Top-down Approach:
Find Hotspot Kernel

|ldentify Performance Limiter of the Hotspot

Find performance bottleneck indicators related to the limiter
|dentify associated regions in the source code
Come up with strategy to fix and change the code

Start again

4 <ANVIDIA.



KNOW YOUR HARDWARE:
VOLTA ARCHITECTURE



VOLTA V100 FEATURES

Volta Architecture

Most Productive GPU

Improved NVLink &
HBM2

N

Efficient Bandwidth

Volta MPS

Inference Utilization

Improved SIMT Model

AN

New Algorithms

Tensor Core

120 Programmable
TFLOPS Deep Learning

6 <ANVIDIA.



GPU COMPARISON

P100 (SXM2) V100 (SXM2)
Double/Single/Half TFlop/s 5.3/10.6/21.2 7.8/15.7/125 (TensorCores)
Memory Bandwidth (GB/s) 732 900
Memory Size 16GB 16GB
L2 Cache Size 4096 KB 6144 KB
Base/Boost Clock (Mhz) 1328/1480 1312/1530

TDP (Watts) 300 300

7 <ANVIDIA.



VOLTA SM

GV100 GP100
FP32 Cores 64 64
INT32 Cores 64 0
FP64 Cores 32 32
Register File 256 KB 256 KB
Active Threads 2048 2048
Active Blocks 32 32
Same active threads/warps/blocks on SM

Same amount of registers

Expect similar occupancy, if not limited by shared mem.

FP64

FP64

FP84

FP64

Lo/
ST

Lo
ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

INT FP32 FP32 TENSOR
INT FP32 FP32 GORE:
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LDV LDI

Warp Scheduler (32 threadicik)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 GORE:

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

Lo/ L WL
ST |8 ST ST ST

L1 Instruction Cache.

TENSOR
CORE

SFU

ST ST 8T ST

TENSOR
CORE

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
L FP32 FP32

INT FP32 FP32

TENSOR TENSOR

INT FP32 FP32 GORK

L FP32 FP32
INT FP32 FP32

FP32 FP32

LD/ LD/ LD/ LD
AR Al

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

CORE

SFU

TENSOR TENSOR

INT FP32 FP32 GORE

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LD/ LDF LDl LD
ST ST ST ST

8

CORE

SFU

<ANVIDIA.



IMPROVED L1 CACHE

Pascal SM Volta SM
Load/Store Units Load/Store Units

L1$ and Shared Memory

Low Latency o

64 KB

w'

L2$
6 MB

10 <ANVIDIA.



INSTRUCTION LATENCY

Dependent instruction issue latency for core FMA operations:
Volta: 4 clock cycles

Pascal: 6 clock cycles

nnnnnnn



TENSOR CORE

Mixed precision multiplication and accumulation

Each Tensor Core performs 64 FMA mixed-precision operations per clock

D =

FP16 or FP32

FP16 or FP32

14

<NVIDIA.



TENSOR CORE

CUBLAS/cuDNN: set TENSOR_OP_MATH

CUDA: nvcuda::wmma API

#include <mma.h>
using namespace nvcuda;
__global__ void wmma_ker(half *a, half *b, float *c) {

wmma:
wmma:
wmma:

wmma:

wmma .

wmma:

wmma:

wmma:

:fragment<wmma: :matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
:fragment<wmma: :matrix_b, 16, 16, 16, half, wmma::row_major> b_frag;
:fragment<wmma::accumulator, 16, 16, 16, float> c_frag;

:fill fragment(c_frag, 0.0f);
:1load_matrix_sync(a_frag, a, 16);
:load_matrix_sync(b_frag, b, 16);

:mma_sync(c_frag, a_frag, b_frag, c_frag);

:store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);

NVIDIA.



KNOW YOUR TOOLS:
PROFILERS



PROFILING TOOLS

Many Options!

From NVIDIA Third Party

Volta, Turing, Ampere and future:

Older generations

Without loss of generality, in this talk we will be showing Nsight systems and
compute screenshots

18 <ANVIDIA.



Nsight Systems

System level analysis tool (think timeline

profile vl.qdrep % | profile v2.qdrep X | profile v3.qdrep X | profile vd.qdrep % | profile v5.qdrep X | profile vl 20.qdrep % | profile v2 20.qdrep X | profile v3 20.qdrep X [ drep X
£ Timeline View - Pix A\ 12 warnings, 13 messages
8s| +600ms +620ms +640ms +660ms +saams +700ms +720ms +740ms +760ms 2

v nreaus (107
~ V| [73308] hpgmg-fv ~

NVTX

CuDA API ) (DT ¢ 1 1D VD) DR | 1 D N (TR | b 1) W) (R | | D ) |G

Profiler ove

ead
il i il A il i

CPU info | == I

V! [73316] hpgmg-fv ~

V! [73314] hpgmg-fv ~

) b
~ CUDA (Tesla V100-SXM2-16GE
~ 22.6% Unified memory
» 100.0% Memory
~ 77.4% Context 1

~ 99.3% Kernels I EQCOOO@E.. | i Ml AECEOCOOuIn MIoCOsmeR i M MeCeCHCm: Metesad 1 [ A o e T R o o
G PU _i nfo » 36.5% smooth kemel |, AODBOS0 .. 4000000 1. 1000000 .. 000000 5. 0000000 .4 4000000 5. 0000000 .4 000000 B 4

wsweopybeckemet M || ||| (SN (][ [ MM ][], ] [IMeMI]] |BM|l{]]] [}

» 11.2% zero_vector_kerne | I |
» 8.7% reduction_kernel I " 1l ol
» 5.7%apply BCsv2 kern,, | | | ... IR, ) ) . MR i (AR, ) IR, AR, . Ry, ,, JSEME q, MEEN,, ]

5 kernel groups hid smefe:
» 0.7% Memory
NVTX

Events View -

# Name “ Duration TID GPU Context Start

Right-click a timeline row and select "Show in Events View" to see events here

Nsight Systems:
nsys profile -o profile v4 20 ./build/bin/hpgmg-fv 7 8

20

<ANVIDIA.



Nsight Compute

Kernel analysis too

s Window Help

tx &

Page: |Details re All ~ | Launch: 0- 10053 - smooth_kernel

Current

rt X @ profile v

10053 - smooth_kernel (65536, 4,

~ GPU Speed Of Light

x &

Add Baseline

Time: 213.54 usecond Cycles: 275,911 Regs: 72 GP!

x & C ~report X éh pr

~ |Apply Rules

High-level overview of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the achieved percentage of utilization with respect to th

SOL L2
SOL FB

SOL SM:
SOL SM
SOL SM
SOL SM
SOL SM
SOL SM
SOL SM
SOL SM

SOL SM
SOL SM
SOL SM:
SOL IDC
SOL SM
SOL SM
SOL SM
SOL SM

SOL SM Breakdown

Issue Active [%]
Inst Executed [%]

ted Pipe Lsu [%
Mio2rf Writeback Active [%]
Pipe Shared Cycles Acti

Mio Inst Issued

Mio Pq Read Cycles Active [%]

Mio Pq Write Cycles Active [%]

Inst Executed Pipe Cbu Pred On Any [%

Inst Executed Pipe Xu [%]
cuted Pipe Adu

Request Cycles Active [%

Inst Executed Pipe Tex [%

Inst Ex Pipe Ipa [%]

Inst Executed Pipe Fp16 [¥

Pipe Tensor Cycles Active [%

ssages for details.

Nsight Compute

Duration [usecond]

Elapsed Cycles [cycle]

SM Active Cycles [cycle]

SM Frequency [cycle/nsecond]
.70 | Memory Frequency [cycle/usecond]

GPU Utilization

50.0 70.0
Speed Of Light [%]

: Tesla V100-5XM2-16GB SM Frequency: 1.29 cycle/nsecond CC: 7.0 Process: [73542] hpgmg-fv

think metrics

rt x @ profile_v4_20.nsight-cuprof-report X <
Copy as Image ~

® 0 0

All

heoretical maximum.

SOL Memory Breakdown

SOL GPU: Dram Throughput
SOL L2: T Sectors [%]
SOL L2: Lts2xbar
SOL L2: D Sectors Fill Device [2
SOL L1: M Xbar2l1tex Read Sectc
D Sectors [%]
Xbar2lts Cycles Active [9
: Data Pipe Lsu Wavefronts [%]
: T Tag Requests [
: M Lltex2xbar Req Cycles Active [9
: Lsu Writeback Active [%]

Data Bank Reads [%]
: Data Bank Writes [%]

D Atomic Input C Active [%]
D Sectors Fill Sysmem [%
SOL L1: Tex Writeback Active [%]
SOL L1: Data Pipe Tex Wavefronts [%]

Recommendations

nv-nsight-cu-cli -o profile v4 20 \
——-launch-count 1

./build/bin/hpgmg-fv 7 8

21

<ANVIDIA.



KNOW YOUR APPLICATION:
HPGMG



HPGMG

High-Performance Geometric Multi-Grid, Hybrid Implementation

V-CYCLE

F-CYCLE

SMOOTHER oo
& RESIDUAL

<\ SMOOTHER

GPU

SMOOTHER  +HRrESHOLD

DIRECT SOLVE

Fine levels are executed on throughput-optimized processors (GPU)

Coarse levels are executed on latency-optimized processors (CPU)

http://crd.lbl.gov/departments/computer-science/PAR/research/hpama/

31 <ANVIDIA.


http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

kernel time / total time

0.5

0.4

0.3

0.2

0.1

MULTI-GRID BOTTLENECK

Cost of operations

==smoother
==interpolation
==copy_blocks 7
— on
~ £
_ o
MOST TIME SPENT g
ON STENCILS o
~
&)
S
=
[0
c
| -
&)
4

==smoother

== interpolation
08 ;cop _blocks
0.7 —
0.6
0.5
0.4
0.3
0.2
0.1

0

SURFACE

VOLUME

32

<ANVIDIA.



MAKE IT SO:

ITERATION 1
2"° ORDER 7-POINT STENCIL



IDENTIFY HOTSPOT

+ CUDA HW (Tesla V100-SXM2-16GB, 00
v 82.0% Context 1

~ 99.1% Kernels
H OtS pot » » 46.3% smooth_kernel

» 14.6% copy_block kernel

» 8.8% zero_vector_kernel
» 6.4% restriction_kernel
» 5.2% interpolation_v2 kernel
5 kernel groups hidden... e
» 0.9% Memory

|dentify the hotspot: smooth_kernel()

Original Version 2.079ms 1.00x

36 <ANVIDIA.



IDENTIFY PERFORMANCE LIMITER
Compute utilization

GPU Utilization

Memory utilization




PERFORMANCE LIMITER CATEGORIES

Memory Utilization vs Compute Utilization
Four possible combinations:

_I- -I mm

Comp Mem Comp Mem Comp Mem Comp Mem
Compute Bandwidth Latency Compute and
Bound Bound Bound Bandwidth

Bound



BANDWIDTH BOUND ON V100

GPU Utilization

Memory [%]

Speed Of Light [%]




DRILLING DOWN: LATENCY ANALYSIS (V100)

~ Occupancy

o

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another way to view occupancy is the percentage of the hardware's ability
to process warps that is actively in use. Higher occupancy does not always result in higher performance, however, low occupancy always reduces the ability to hide latencies, resulting in overall
performance degradation. Large discrepancies between the theoretical and the achieved gccupancy during execution typically indicates highly imbalanced workloa

Theoretical Occupancy [
Theoretical Active Warp
Achieved Occupancy [%]
Achieved Active Warps |

FY
&

w
N

Warp Occupancy

>
I
g4
s
-4
3
3
o
<)
£
=

2
I

Warp Occupancy

Block Limit Registers [block]
ST SM [warp] Block Limit Shared Mem [block]
47.21|Block Limit Warps [block]
SM [warp] 30.21|Block Limit SM [block]

Impact of Varying Register Count Per Thread

o
I
&
Registers Per Thread
Impact of Varying Block Size

Impact of Varying Shared Memory Usage Per Block

1

00v'9L
9Sv'6L

stall Long Scoreboal

Stall Not Selected

Stall Drain

stall Dispatch Stall

Stall Math Pipe Throttle

Stall No Instruction

Warp States

Stall IMC Miss

Stall Short Scoreboard

Stall Misc

Stall MIO Throttle

Stall Barrier

Stall Membar

stall Sleeping

Stall Tex Throttle

Warp State (All Cycles)

100.0
Cycles per Instruction




OCCUPANCY

Each SM has limited resources:
max. 64K Registers (32 bit) distributed between threads
max. 48KB of shared memory per block (96KB per SMM)
max. 32 Active Blocks per SMM

Full occupancy: 2048 threads per SM (64 warps)

When a resource is used up, occupancy is reduced

(*) Values vary with Compute Capability .. <nioa



LATENCY

GPUs cover latencies by having a lot of work in flight

B The warp issues
[ ] The warp waits (latency)

Fully covered latency

"

warp 0
warp 1
warp 2

warp 3

Exposed latency, not enough warps

No warp issues

47

<ANVIDIA.



LATENCY AT HIGH OCCUPANCY

Many active warps but with high latency instructions

Exposed latency at high occupancy
wapo BT TTTTTTT M TTTTTTTT]
warp 1 . IEEEEER
warp 2 W7 T TTTTTTTITTTT
warp 3 . IEEEEEEEE EEEEEER
warp 4 . HEEEEEEN
warp 5 .|||||

warp 6
warp 7
warp 8

warp 9

No warp issuing



GLOBAL MEMORY

Basic optimization is the same: Coalescing, Alignment, SOA pattern.

Granularity is 32 bytes, i.e. 8 threads are accessing a continuous 32 byte space.

Latency: what is the occupancy we need to saturate global load/store?

One V100:
BW = 4096 bit * 877Mhz * 2 / 8 = 898 GB/s -~ 1.23x of P100 (theoretical)

SM ratio: 80/56 = 1.43x of P100

49

NVIDIA.



LOOKING FOR MORE INDICATORS

Source Code
Association

#ifdef USE CHEBY AR . 98 03,53 ——
t double c1 = {EBYSHEV DEGREE] ; 00007 ff.. . - CONS} E 1830 65,538 Global 64 393,216)( 786,432
nst double 2 V_DEGREE] ; 00007 ff... . 65,536
#elif USE GSRB 00007 ff.. : .CONSTANT.SYS B G 393,216 786,432
const int color .my_bo my_boxes[box].low.j"le 0ee07f i ’,
#endi f 00007ff... , . )
00007 ff.. LE .64, CONSTANT. SYS L Global Load 6 393,216
00007 f.. .E 64 .CONSTANT.SYS R34, Global Load 6 353,216)
00007 ff.. LEA.HI.X.5X32 ; e
for(int ket dim; k++){ 00007 ff.. LEA . . . 1
int ijk = thread + threadIdx.y*jStride + k*kstr R <€.64.. CONSTANT.. 5Y5 49| 65,536 Global Load 64 786,432
00007 ff.. LEA.HI.X R41, RA1, 65,536)
00007f... TADD3 R38, , RS1, [ 65,536)

00007 ff... IMAD ’ ; : 65,536

786,432
786,432

1
-
(

apply operator §

T S CW D P LR G 00007 ff.. .E 64.CONSTANT.SYS R46, [R40] 250)] 1536 Global Load E |
LDG.E.64.CONSTANT.SYS R38, [R38) 219 65,536 Global Load 393,218

00007 ff.. IMAD. IADD . R3, " & [EED)

00007ff.. DADD , -R24, — 65,536/

00007 ff.. DMUL : 65,536/

SMOOTHER /

12 Global Load
Transactions per 1 Request




MEMORY TRANSACTIONS: BEST CASE

A warp issues 32x4B alighed and consecutive load/store request
Threads read different elements of the same 128B segment

1x 128B load/store request per warp

AAAAAAARAAAAAAAAAAAAAA AR AR AAAAD
e e s v v v

1x 128B L1 transaction per warp

3 > <€ > <€ > <€ >
4x 32B L2 transactions per warp

1x L1 transaction: 128B needed / 128B transferred

4x L2 transactions: 128B needed / 128B transferred

53 <ANVIDIA.



MEMORY TRANSACTIONS: WORST CASE

Threads in a warp read/write 4B words, 128B between words

Each thread reads the first 4B of a 128B segment

Str'ldf: 32x4B warp threadi
| rrrrrrrorrrrrrr o rrrrrrr
thread
<€ >

thread
32x L1 transactions: 128B needed / 32x 128B transferred

32x L2 transactions: 128B needed / 32x 32B transferred



TRANSACTIONS AND REPLAYS

With replays, requests take more time and use more resources

More instructions issued

More memory traffic

Increased execution time

-«
Inst. O Inst. 1 Inst. 2
Issued Issued Issued

Extra work (SM)

Transfer data for inst. 0
Transfer data for inst. 1

Transfer data for inst. 2

Extra memory traffic

>
Inst. 0 Inst. 1 Inst. 2
Completed | | Completed | | Completed

Extra latency

Threads

0-7/24-31

Threads
8-15

Threads
16-23

Threads
0-7/24-31

Threads
8-15

>
Threads

16-23

55

<ANVIDIA.



FIX: BETTER GPU TILING
Block Size Up from (8,4,1) to (32,4,1)

GPU Utilization

Before

Memory [%]

Speed Of Light [%]

Memory
GPU Utilization Utilization U P

Memory [%]
. r @ r 0 r - - r 0 r 0 0]
0.0 4 3 j 40.0 50.0 60.0
Speed Of Light [%]

After

Load 64| 8 89, 024)
Load 64 (. 196, 608) | 589,824)
ckdim; k&) 80007ff LEA.HI.X.SX32
= threadIdx.x + threadIdx.y*jStride + k*kStrid 00607 LEA . R18,
.E.G4,CONSTANT.SYS R36, [ Load 196,608 589,624)
LEA.HI.X
// apply operator TADD3
const double Ax = apply_op_ijk(); 6660 IMAD.X R39, . ' . € 65,536
.E CONSTANT.SYS , [R40] 65,5306] Global Load 64 | 589,824
LDG.E.64.CONSTANT.SYS R38, [R38] % load 64 "ge.ees 5 4)
SMOOTHER TMAD. TADD [
DADD H26, -
ijk 0 DMUL

(X(ijk)-xplijk]) + c2*lambda*(rhs[ijk]-Ax); 1 A DADDY

Kernel Time
Original Version 2.079ms 1.00x
Better Memory Accesses 1.756ms 1.18x




PERF-OPT QUICK REFERENCE CARD

Problem: Latency is exposed due to low occupancy

Goal: Hide latency behind more parallel work

Indicators: Occupancy low (< 60%)
Execution Dependency High

Strategy: Increase occupancy by:

» Varying block size

« Varying shared memory usage

 Varying register count (use __launch_bounds)




PERF-OPT QUICK REFERENCE CARD

Problem:

Memory is accessed inefficiently => high latency

Goal:

Reduce #transactions/request to reduce latency

Indicators:

Low global load/store efficiency,
High #transactions/#request compared to ideal

Strategy:

Improve memory coalescing by:

« Cooperative loading inside a block

« Change block layout

« Aligning data

« Changing data layout to improve locality




PERF-OPT QUICK REFERENCE CARD

Category:
Problem:
Goal:

Indicators:

Strategy:

Bandwidth Bound - Coalescing

Too much unused data clogging memory system

Reduce traffic, move more useful data per request

Low global load/store efficiency,
High #transactions/#request compared to ideal

Improve memory coalescing by:

« Cooperative loading inside a block

« Change block layout

 Aligning data

« Changing data layout to improve locality




ITERATION 2: DATA MIGRATION



PAGE FAULTS

Details

» Threads (10)

~ v [71981] hpgmg-fv ~
NVTX main [9.497 s]
CUDA API daDeviceSynchronize ) (%) [€uda.] (< IETdE)

Profiler overhead

v [71988] hpgmg-fv - l_“

Py —

Vv [71987] hpgmg-fv -

v/ [71989] hpgma-fv - W R

6 threads hidden... e ) .
» CUDA HW (Tesla V100-SXM2-16GB [T e Y " m B
v 76.1% Context 1
» 99.3% Kernels 5M00...) (SMooth.) Fesidm) (0 0D o = i e o e e = O 000000 (STosth) (SH6sE

» 0.7% Memory

NVTX main [9.172 s]
v 23.9% Unified memory
500 (SMoeEh...] FEsid0 O 0 0 oro i3 O 00000000 O 000000 6 EHooH..:) §Moot:

» [All Streams]

~ 100.0% Memory _ | Sl
85.9% HtoD transfer '

uLII woould

dhe 1 L) ‘ diiu 1

14.1% DtoH transfer

68 <ANVIDIA.



MEMORY MANAGEMENT

Using Unified Memory

Developer View With

No changes to data structures Unified Memory

No explicit data movements

Single pointer for CPU and GPU data

Use cudaMallocManaged for allocations

Unified Memory

69 <ANVIDIA.



UNIFIED MEMORY

Eliminating page migrations and faults

!

Page faults

F-CYCLE

GPU

THRESHOLD



PAGE FAULTS

Almost gone

» Threads (10)

~ v/ [72780] hpgm¢~

NVTX main [9.120 s]
CUDA API cudaDeviceSynchronize ) JICUS) jEuds A .

Profiler overhead

/1727861 hpgm- ]
e ]

e cudaDevice vnc fonize

Vv [72787] hpgm¢-

6 threads hidde=d
»~ CUDA HW (Tesla V1
v 78.1% Context 1
» 99.3% Kernels u (smooth Ker...]
» 0.7% Memory
NVTX main [8.801 s]
v 21.9% Unified men
~ 100.0% Memory
87.3% HtoD tran
12.7% DtoH tran

Py ARy E\..‘ i ot ] o | ot i § o o | it :",‘,M o b § it o 1 o Fﬁ!ilﬂ:ﬂii.:(#{l‘l‘("—_’“

L Uil

72 <ANVIDIA.



inte;olation_vz_kernel

PAGE FAULTS

Significant speedup for affected kernel

interpolation_v2_kernel
Begins: 8.6425

Begins: 8.64297
Ends: 8.64332s|(+355.133 ps
grid: <<<1, 1, I6>>>

block: <<<16, 4, 1>>>

Launch Type: Regular

Static Shared Memory: 0 bytes
Dynamic Shared Memory: 0 bytes
Registers Per Thread: 48

Local Memory Per Thread: 0 bytes
Local Memory Total: 94,371,840 bytes
Shared Memory executed: 0 bytes
Shared Memory Bank Size: 4 B
Theoretical occupancy: 62.5 %
Launched from thread: 71981
Latency: «17.710 pys

Correlation ID: 4975

Stream: Default stream (7)

== (+50.719 ps)
grid: <<<1,1, 16>>>

block: <<<16, 4, 1>>>

Launch Type: Regular

Static Shared Memory: 0 bytes
Dynamic Shared Memory: 0 bytes
Registers Per Thread: 48

Local Memory Per Thread: 0 bytes

Local Memory Total: 94,371,840 bytes |

Shared Memory executed: 0 bytes
Shared Memory Bank Size: 4 B

161 Theoretical occupancy: 62.5 %

Launched from thread: 72780
Latency: «14.373 ps
Correlation ID: 6361

Stream: Default stream (7)

T

r

74

<ANVIDIA.



MEM ADVICE API

cudaMemPrefetchAsync(ptr, length, destDevice, stream)
Migrate data to destDevice: overlap with compute
Update page table: much lower overhead than page fault in kernel
Async operation that follows CUDA stream semantics

cudaMemAdvise(ptr, length, advice, device)

Specifies allocation and usage policy for memory region
User can set and unset at any time

75 NVIDIA.



CONCURRENCY THROUGH PIPELINING

Use CUDA streams to hide data téransfers

Serial

performance
improvement
Concurrent- overlap kernel and D2H copy -

76



ITERATION 3:
REGISTER OPTIMIZATION AND CACHING



LIMITER: STILL MEMORY BANDWIDTH

GPU Utilization

Speed Of Light [%]



GPU MEMORY HIERARCHY

V100
Functional Units Functional Units  Registers (256 KB/SM): good for
intra-thread data reuse
Register File Register File e Shared mem/ L1$ (128 KBISM)
e good for explicit intra-block data
Shared Memory / Shared Memory /
L1$ L1$ reuse

Bring reused L2$ (6144 KB): implicit data reuse
data closer to

the SMs

Global Memory (Framebuffer)

81 <ANVIDIA.



CACHING IN REGISTERS

888888888



CACHING IN REGISTERS

Load first set of data




CACHING IN REGISTERS

Perform calculation
Stencil #

]
]

84 <ANVIDIA.



CACHING IN REGISTERS

Naively load next set of data?




CACHING IN REGISTERS

Reusing already loaded data is better

L e eyl
ENEEEEEEEEEEEEE

¥
N

i




CACHING IN REGISTERS

Repeat

Stencil

[
[ ][]

||
[ ]

Ly
NN

||
]

L]
LI

L[
[

Higher register usage may
result in reduced
occupancy => trade off
(run experiments!)




THE EFFECT OF REGISTER CACHING

0 7 o
437 00007f3.. IADD3 ’ ’ [¢] 16,384

438 00007f3.. SE .CONSTANT. SYS il ] [¢] 16,384 Global Load 64 49,152 147,456

439 00007f3.. IMAD.X R43, ’ + R7, 0 16,384 T . f h
440 00007f3.. .E.64.CONSTANT.SYS ; 1 16,384) Global Load 64 49,152 147,456 ransac lons Or Cac e

441 00007f3.. IMAD.X , , ’ ’ 0 16,384

442 00007 f3.. IADD3 ; o , o 16,384
443 00007f3.. .E.64.CONSTANT.SYS ’ of 16,384) Global Load 64 49,152 147,456 Oa S re uce y a
444 00007f3.. IMAD.X R25, , 0 16,384

445 00007f3.. .E.64.CONSTANT.SYS R44, [R6] il 16,384 Global Load 64 49,152)( 147,456)
446 00007f3.. LDG.E.64.CONSTANT.SYS R30, [R24] q 16,384) Global Load 64 49,152 147,456 aC Or O
0

447 00007f3.. IMAD. IADD 16,384

448 00007f3.. DADD R32, - 16, 384
449 00007f3.. DMUL R32, R34, 536] 16,384

450 00007f3.. IMAD.IADD ’ B ’ 1 16,384

GPU Utilization
e b trancierrimg le:
high, but transferring less
0.0 lOI.O 20.0 30‘,0 401.0 50.0 60.0 70.0 80.0 90.0 100.0 redundant data

Speed Of Light [%]

Original Version 2.079ms 1.00x
Better Memory Accesses 1.756ms 1.18x
Register Caching 1.486ms 1.40x



SHARED MEMORY

Programmer-managed cache
Great for caching data reused across threads in a CTA
128KB split between shared memory and L1 cache per SM

Each block can use at most 96KB shared memory on GV100

Search for cudaFuncAttributePreferredSharedMemoryCarveout in the docs

global  CJOIC10I01010103
__global  void sharedMemExample(int *d) {

__shared_ float s[64]; registers OO0aano
int t = threadIdx.x;
s[t] = d[t];

__syncthreads(); oba
if(t>0 && t<63) s QEQQEQEQ
stencil[t] = -2.0f*s[t] + s[t-1] + s[t+1]; shared |£| E]E] E] E]

registers O000o0on

92

<2 NVIDIA.



PERF-OPT QUICK REFERENCE CARD

Category: Bandwidth Bound — Register Caching

Problem: Data is reused within threads and memory bw
utilization is high

Goal: Reduce amount of data traffic to/from global mem

Indicators: High device memory usage, latency exposed
Data reuse within threads and small-ish working set
Low arithmetic intensity of the kernel

Strategy: « Assign registers to cache data
« Avoid storing and reloading data (possibly by
assigning work to threads differently)
Avoid register spilling




PERF-OPT QUICK REFERENCE CARD

Problem:

Load/Store Unit becomes bottleneck

Goal:

Relieve Load/Store Unit from read-only data

Indicators:

High utilization of Load/Store Unit, pipe-busy stall
reason, significant amount of read-only data

Strategy:

Load read-only data through Texture Units:
* Annotate read-only pointers with const _ restrict
« Use Idg() intrinsic




PERF-OPT QUICK REFERENCE CARD

Category:
Problem:
Goal:

Indicators:

Strategy:

Device Mem Bandwidth Bound — Shared Memory

Too much data movement

Reduce amount of data traffic to/from global mem

Higher than expected memory traffic to/from global
memory
Low arithmetic intensity of the kernel

(Cooperatively) move data closer to SM:
« Shared Memory

« (or Registers)

« (or Constant Memory)

« (or Texture Cache)




PERF-OPT QUICK REFERENCE CARD

Problem:

Shared memory bandwidth bottleneck

Goal:

Reduce amount of data traffic to/from global mem

Indicators:

Shared memory loads or stores saturate

Strategy:

Reduce Bank Conflicts (insert padding)
Move data from shared memory into registers
Change data layout in shared memory




ITERATION 4:
KERNELS WITH INCREASED
ARITHMETIC INTENSITY



OPERATIONAL INTENSITY

Operational intensity = arithmetic operations/bytes written and read
Our stencil kernels have very low operational intensity
It might be beneficial to use a different algorithm with higher operational intensity.

In this case this might be achieved by using higher order stencils

98 NVIDIA.



ILP VS OCCUPANCY

Earlier we looked at how occupancy helps hide latency by providing independent threads of
execution.

When our code requires many registers the occupancy will be limited but we can still get
instruction level parallelism inside the threads.

Dependent instr.

Occupancy is helpful to achieving performance but not always
required =

Some algorithms such as matrix multiplications allow
increases in operational intensity by using more registers Independent instr.
for local storage while simultaneously offering decent ILP.
In these cases it might be beneficial to maximize ILP and
operational intensity at the cost of occupancy.

99 NVIDIA.



STALL REASONS:
EXECUTION DEPENDENCY

// ADD // LOAD

N\ N\

// ADD // ADD

Memory accesses may influence execution dependencies
Global accesses create longer dependencies than shared accesses

Read-only/texture dependencies are counted in Texture

Instruction level parallelism can reduce dependencies

// Independent ADDs

IIIIIII



float a = 0.0f;
for( int 1 =0 ; 1 < N ; ++1i )
a += logf(b[i]);

(@

a

#pragma unroll is useful to extract ILP

Manually rewrite code if not a simple loop

ILP AND MEMORY ACCESSES

No ILP

b[e]

=+

= logf(c)

b[1]

+

= logf(c)
b[2]

+

= logf(c)

b[3]
+= logf(c)

2-way ILP (with loop unrolling)

float a, a0 = 0.0f, al = 0.0f;
for( int 1 =0 ; i < N; i+=2)

{
a0 += logf(b[i]);
al += logf(b[i+1]);

}

a

= ab + al

cO = b[0O]

a0 += logf(cO) i
cO = b[2]
a0 += logf(co) i

‘II' a = a0 + al

cl

al

cl

al

= b[1]
+= logf(cl)
= b[3]
+= logf(cl)

105

<ANVIDIA.



PERF-OPT QUICK REFERENCE CARD

Problem:

Not enough independent work per thread

Goal:

Do more parallel work inside single threads

Indicators:

High execution dependency, increasing occupancy has
no/little positive effect, still registers available

Strategy:

« Unroll loops (#pragma unroll)
« Refactor threads to compute n output values at the
same time (code duplication)




PERF-OPT QUICK REFERENCE CARD

Problem:

GPU is computing as fast as possible

Goal:

Reduce computation if possible

Indicators:

Clearly compute bound problem, speedup only with
less computation

Strategy:

Pre-compute or store (intermediate) results
Trade memory for compute time

Use a computationally less expensive algorithm
Possibly: run with low occupancy and high ILP




SUMMARY



SUMMARY

Performance Optimization is a Constant Learning Process

Know your application

Know your hardware
Know your tools
Know your process |

|dentify the Hotspot

Classify the Performance Limiter

Look for indicators

Make it so!

109 <ANVIDIA.



Start here

nsys profile -o profile v4 20
\
./build/bin/hpg

Recheck overall
workload behavior

Recheck overall
workload behavior

Dive into top

CUDA kernels Dive into graphics

frames

\

Finished if
performance
satisfactory

nv-nsight-cu-cli -o profile v4 20 \
--kernel-regex ".*smooth kernel*" \
--launch-count 1 ./build/bin/hpgmg-fv 7

112

<ANVIDIA.



GUIDING OPTIMIZATION EFFORT

Challenge: How to know where to start?

Top-down Approach:

Find Hotspot Kernel } Nsight Systems

|dentify Performance Limiter of the Hotspot h

Find performance bottleneck indicators related to the limiter > Nsight Compute

|dentify associated regions in the source code )
: . Y60
Come up with strategy to fix and change the code } X

Start again



REFERENCES

CUDA Documentation

Best Practices: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Volta Tuning Guide: http://docs.nvidia.com/cuda/volta-tuning-guide/

Ampere Tuning Guide: https://docs.nvidia.com/cuda/ampere-tuning-guide/

NVIDIA Developer Blog on HPGMG

https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/

Nsight Tools

https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-vour-kernels/

116 <ANVIDIA.


http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/volta-tuning-guide/
https://docs.nvidia.com/cuda/ampere-tuning-guide/
https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/

- \ /
v N,
\ 5% 7
4 \ ‘
—— Y / |
) |
> i sl
| = |
— [ 7 YAl ~
- = \\- -

,\ \
N ‘
‘\

<SINVIDIA.



