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Ampere A100

SM

L1 …
SM

L1

SM

L1

SM

L1

SM

L1

L2

DRAM

108 SM

P100 V100 A100

SMs 56 80 108

Memory 16GB 16/32GB 40/80GB

Bandwidth 720GB/s 900GB/s 1555GB/s

L2 4MB 6MB 40MB
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• 32 FP64 lanes

• 64 FP32 lanes

• 64 INT32 lanes

• 16 SFU lanes (transcendental)

• 32 LD/ST lanes 

• (G-mem/L-mem/S-mem)

• 4 Tensor Cores

• 4 TEX lanes

STREAMING MULTIPROCESSOR
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SM Resources
• Thread blocks require registers and shared memory.

• SM can schedule any resident warp without context switching.

Per SM P100 V100 A100

Register File 256KB 256KB 256KB

Shared Memory 64KB
Configurable – Up to 

96KB

Configurable – Up to 

163KB

Max Threads 2048 2048 2048

Max Warps 64 64 64

Max Blocks 32 32 32
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Performance Constraints

Compute bound – saturates compute units

• Reduce the number of instructions executed

• Vector types, intrinsic operations, tensor cores, FMAs.

Bandwidth bound – saturates memory bandwidth

• Optimize access pattern.

• Use lower precision.

Latency bound

• Increase the number of instructions / mem accesses in flight.
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Little’s Law
For Escalators

Our escalator parameters

• 1 Person per step.

• A step arrives every 2 seconds
Bandwidth: 0.5 person/s.

• 20 steps tall
Latency = 40 seconds.
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Little’s Law
For Escalators

• One person at a time?
Achieved bandwidth = 0.025 person/s.

• To saturate bandwidth
Need one person arriving with every step,
we need 20 persons in flight.

• Need Bandwidth x Latency persons in flight.

A step arrives every 2 seconds
Nominal Bandwidth: 0.5 person/s
20 steps tall : Latency = 40 seconds
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Optimization Goals
Saturating the compute units

• 𝑎 = 𝑏 + 𝑐 → 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
1

3×4
𝐹/𝐵

• 𝐺𝑃𝑈’𝑠 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
15 𝑇𝐹𝑝𝑠

900 𝐺𝐵𝑝𝑠
= 16.6 𝐹/𝐵

• It is hard to saturate the compute units. 

• One can improve it by saturating the memory bandwidth.

Saturating the memory bandwidth

• Hiding the latency is the key in achieving this goal.
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Memory Bandwidth
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Volta reaches 90% of peak bandwidth with ~6KB of data in flight per SM. 
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Little’s law
Takeaways

Instructions in flight = 

instructions in flight per thread x threads executing

Instruction Level Parallelism Occupancy
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Higher occupancy hides latency
SM has more warp candidates to schedule while other warps are waiting for 
instructions to complete.

Occupancy = 
Achieved number of threads per SM

Maximum number of threads per SM

• Use the profiler to compute it.

Achieved occupancy vs theoretical occupancy
Need to run enough thread blocks to fill all the SMs.

Be mindful of diminishing returns. 

Occupancy
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Instruction Issue

Instructions are issued in-order

If an instruction is not eligible, it stalls the warp.

An instruction is eligible for issue if both are true:

• A pipeline is available for execution

Some pipelines need multiple cycles to issue a warp.

• All the arguments are ready

Argument is not ready if a previous instruction has not produced it yet.
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Instruction Issue Example

__global__ void kernel (float *a, float *b, float *c) {

int i= blockIdx.x * blockDim.x + threadIdx.x;

c[i] += a[i] * b[i];
} LDG.E R2, [R2];

LDG.E R4, [R4];

LDG.E R9, [R6];

FFMA R9, R2, R4, R9;

STG.E [R6], R9;

stall!

stall!

12B / thread
in flight
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Computing 2 values per thread

__global__ void kernel (float2 *a, float2 *b, float2 *c) {

int i= blockIdx.x * blockDim.x + threadIdx.x;

c[i].x += a[i].x * b[i].x;
c[i].y += a[i].y * b[i].y;

}
LDG.E.64 R2, [R2];

LDG.E.64 R4, [R4];

LDG.E.64 R6, [R8];

FFMA R7, R3, R5, R7;

FFMA R6, R2, R4, R6;

STG.E.64 [R8], R6;

24B/ thread
in flight

2 Independent instructions

stall!

stall!
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Control Flow
Blocks of threads, warps

• Single Instruction Multiple Threads (SIMT) model.

• CUDA hierarchy: Grid -> Blocks -> Threads.

• One warp = 32 threads.

• Why does it matter?
Many optimizations depend on behavior at the warp level.
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Control Flow

• Different warps can execute different code
No impact on performance.
Each warp maintains its own Program Counter.

• Different code path inside the same warp?
Threads that do not participate are masked out,
but the whole warp executes both sides of the branch.

Divergence



17

Control Flow

• Thread blocks can have 1D, 2D, or 3D representation. 
Threads are linear in hardware. 

• Consecutive 32 threads belong to the same warp.

Mapping threads

80 Threads:
40 threads in X

2 rows of threads in Y

40

2
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Control Flow

• Thread blocks can have 1D, 2D, or 3D representation. 
Threads are linear in hardware. 

• Consecutive 32 threads belong to the same warp.

Mapping threads

80 Threads:
40 threads in X

2 rows of threads in Y

40

2

3 warps (96 threads)
16 inactive threads in 3rd warp

32

24

8

16 16
2

40
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow
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Control Flow

Problem: 2D convolution with padding on an input image of 
size 1024x1024.

• Number of divergence in rows

• 2-way divergence in first and last warp of each row.

• Total warps with divergence: 1024 x 2 = 2048.

• 6% of threads will have a 2-way divergence.

Case study: Thread divergence
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Control Flow

• Not every branch is a divergence. 

• Minimize thread divergence inside a warp.

• Divergence between warps is fine.

• Maximize “useful” cycles for each thread (maximize # of 
threads executing + minimize thread divergence).

• Do not call a warp-wide instruction on a divergent branch 
(e.g. __syncthreads()).

Takeaways
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Intrinsic Functions

• Fast but less accurate math intrinsic functions are 
available.

• 2 ways to use the intrinsic functions

• Whole file: compile with --fast-math

• Individual calls
E.g. __sinf(x), __logf(x), __fdivide(x,y)

• The programming guide has a list of intrinsic functions 
and their impact on accuracy. 
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Tensor Cores

Dedicated matrix multiplication pipeline. 

Input precision: FP16.

Peak Performance

V100: 125 TFLOPS, A100: 312 TFLOPS.

Used in CUBLAS, CUDNN, CUTLASS.
Optimized libraries can reach ~90% of peak.

Exposed in CUDA.

Volta+

https://blogs.nvidia.com/

https://blogs.nvidia.com/
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Tensor Cores

Warp Matrix Multiply Add (WMMA)

• Warp-wide macro-instructions.

• All threads in the warp must be active.

Performs matrix multiplication on 16x16 tiles
(8x32x16 and 32x8x16 tiles also available)

D = A x B + C
A and B: FP16 only
C and D: Same, either FP16 or FP32.

C

B

DA

16

16

Using Tensor Cores in your CUDA code
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Tensor Cores

Each warp processes a 16x16 output tile

Each warp:
Loop on all input tiles Ak and Bk

C = C + Ak x Bk 

Write the output tile.

Typical use

B

CA
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Tensor Cores

Each warp processes a 16x16 output tile

Each warp:
Loop on all input tiles Ak and Bk

C = C + Ak x Bk 

Write the output tile.

Typical use

B

CA

Can compute several tiles per block,

with inputs staged in shared memory.
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Tensor Cores
Case Study: Deep Learning

Source: https://arxiv.org/pdf/1710.03740.pdf

Scaling is required in the backward.

https://arxiv.org/pdf/1710.03740.pdf
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Memory Reads
Getting Data from Global Memory

SM

L1
…

SM

L1

L2

DRAM

• Checking if the data is in L1 (if not, check L2).

• Checking if the data is in L2 (if not, get in DRAM).

• Unit of data moved: Sectors.
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Memory Writes

SM

L1
…

SM

L1

L2

DRAM

Before Volta : Writes were not cached in L1.
Volta+ : L1 will cache writes.
L1 is write-through: Write to L1 AND L2.

L2 is write back : Will flush data to DRAM only 
when needed.

Partial writes are supported (masked portion of sector, 
but behavior can change with ECC on/off).
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L1, L2 Caches

In general, not for cache blocking

• 100s ~ 1000s of threads running per SM.
Tens of thousands of threads sharing the L2 cache.
L1, L2 are small per thread.
E.g., at 2048 threads/SM, with 80 SMs: 64 bytes L1, 38 Bytes L2 per thread.
Running at lower occupancy increases bytes of cache per thread.

• Shared Memory is usually a better option to cache data explicitly:
User managed, no evictions out of your control.

Why Does GPU Have Caches?



41

L1, L2 Caches

Caches on GPUs are useful for:

• “Smoothing” irregular, unaligned access patterns.

• Caching common data accessed by many threads.

• Faster register spills, local memory.

• Fast atomics.

• Codes that do not use shared memory (naïve code).

Why Does GPU Have Caches?
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Cache Lines and Sectors

Sector-level memory access granularity.

• Sector size in Maxwell, Pascal, and Volta: 32B.

• Sector size in Kepler and before: variable (32 or 128).

A cache line is 128 Bytes, made of 4 sectors.

Moving data between L1, L2, DRAM

128 Byte cache line

Sector 0 Sector 1 Sector 2 Sector 3

128-Byte alignment
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Access Patterns

For each warp: How many sectors needed?
Depends on addresses, active threads, access size.
Natural element sizes = 1B, 2B, 4B, 8B, 16B.

Warps and Sectors

0 32 64 96 128 160 224 256 320288192 352

Memory Addresses

WARP

0 31
4-Byte element access
4 sectors
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Access Patterns
Warps and Sectors

0 32 64 96 128 160 224 256 320288192 352

Memory Addresses

WARP

0 31
8-Byte element access
8 sectors

Examples of 8-byte elements: long long, int2, double, float2.
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Access Patterns
Warps and Sectors

0 32 64 96 128 160 224 256 320288192 352

Memory Addresses

WARP

0 31
4-Byte access
4 sectors
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Access Patterns
Warps and Sectors

0 32 64 96 128 160 224 256 320288192 352

Memory Addresses

WARP

0 31
4-Byte access, unaligned
5 sectors

128 Bytes requested; 160 bytes read (80% efficiency).



47

Access Patterns
Warps and Sectors

0 32 64 96 128 160 224 256 320288192 352

Memory Addresses

WARP

0 31
4-Byte access, unaligned
5 sectors

NEXT WARP

With >1 warp per block, this sector might be found in L1 or L2.
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Access Patterns
Warps and Sectors

0 32 64 96 128 160 224 256 320288192 352

Memory Addresses

WARP

0 31
Same address
1 sector
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Access Patterns
Warps and Sectors

0 32 64 96 128 160 224 256 320288192 352

Memory Addresses

WARP

0 31
4-Byte strided access.
32 sectors

128 bytes requested; 1024 bytes transferred.
Using only a few bytes per sector. Wasting lots of bandwidth.
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Access Patterns

• Know your access patterns.

• Use the profiler (metrics, counters) to check how many 
sectors are moved. Is that what you expect? Is it optimal?

• Using the largest type possible (e.g., float4) will 
maximize the number of sectors moved per instruction.

Takeaways
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Memory System

By default, the driver is using the 
configuration that maximizes the occupancy. 

Shared Memory Split

Shared Memory / L1 Split

Volta Ampere

163KB/0KB*

132KB/32KB

96 KB / 32 KB 100KB/64KB

64 KB / 64 KB 64KB/100KB

32 KB / 96 KB 32KB/132KB

16 KB / 112 KB 16KB/148KB

8KB / 120KB 8KB/156KB

0KB /128KB 0KB/164KB

Examples Volta Ampere

0 KB Shared Mem. 

Other resources: 16 

Blocks/SM.

Config: 0/128 

Blocks/SM: 16

Config: 0/164 

Blocks/SM: 16

45 KB Shared Mem. 

Other resources: 4 

Blocks/SM.

Config: 96/32 

Blocks/SM: 2

Config: 163/0

Blocks/SM: 3

Examples

* 1KB is reserved.
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Shared Memory Addressing

• Number of banks: 32, bandwidth: 4B.

• Mapping addresses to banks
- Successive 4B words go to successive banks
- Bank index computation examples: 

(4B word index) % 32.
((1B word index) / 4 ) % 32.
8B word spans two successive banks.
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Logical View Of Shared Memory Banks

0 1

32 33

Bank-0

2 3 4 5 8 96 7

256 260 264

10 30 31

Bank-31

384

Bank-1

0 4 8 12 16 20 24 28 44Byte-address: 32 38 40 120 128124

128 132 136 140 144 148 248 256252

With 4-Byte data
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Shared Memory Bank Conflicts

A bank conflict occurs when, inside a warp:
2 or more threads access within different 4B words in the same bank.
Think: 2 or more threads access different “rows” in the same bank.

N-way bank conflict: N threads in a warp conflict
- Increases latency.
- Worst case: 32-way conflict → 31 replays.
- Each replay adds a few cycles of latency.

There is no bank conflict if:
- Several threads access the same 4-byte word.
- Several threads access different bytes of the same 4-byte word.
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No Bank Conflicts

0 1

32 33

Bank-0

2 3 4 5 8 96 7

0 4 8 12 16 20 24 28 44Byte-address:

10 30 31

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-30 T-31
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No Bank Conflicts

0 1

32 33

Bank-0

2 3 4 5 8 96 7

0 4 8 12 16 20 24 28 44Byte-address:

10 30 31

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-30 T-31
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No Bank Conflicts

0 1

32 33

Bank-0

2 3 4 5 8 96 7

0 4 8 12 16 20 24 28 44Byte-address:

10 30 31

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-30 T-31
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No Bank Conflicts

0 1

32 33

Bank-0

2 3 4 5 8 96 7

0 4 8 12 16 20 24 28 44Byte-address:

10 30 31

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-30 T-31
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2-way Bank Conflict

0 1

32 33

Bank-0

2 3 4 5 8 96 7

0 4 8 12 16 20 24 28 44Byte-address:

10 30 31

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-30 T-31
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2-way Bank Conflict

0 1

32 33

Bank-0

2 3 4 5 8 96 7

0 4 8 12 16 20 24 28 44Byte-address:

10 30 31

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-30 T-31
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3-way Bank Conflict

0 1

32 33

Bank-0

2 3 4 5 8 96 7

0 4 8 12 16 20 24 28 44Byte-address:

10 30 31

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-30 T-31
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Bank Conflict and Access Phase 

4B or smaller words

• Process addresses of all threads in a warp in a single phase.

8B words are accessed in 2 phases

• Process addresses of the first 16 threads in a warp.

• Process addresses of the second 16 threads in a warp.

16B words are accessed in 4 phases

• Each phase processes a quarter of a warp.

Bank conflicts occur only between threads in the same phase
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8B words, No Conflicts

0 0

16 16

Bank-0

1 1 2 2 4 43 3

0 4 8 12 16 20 24 28 44Byte-address:

5 15 15

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-15

T-16 T-17 T-18 T-19 T-20 T-21 T-31

Phase2

Phase1
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8B words, 2-way Conflict

0 0

16 16

Bank-0

1 1 2 2 4 43 3

0 4 8 12 16 20 24 28 44Byte-address:

5 15 15

Bank-31

32 38 40 120 128

Bank-1

124

T-0 T-1 T-2 T-3 T-4 T-5 T-15

T-16 T-17 T-18 T-19 T-20 T-21 T-31

Phase2
(no conflict)

Phase1
(2 way conflict)
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Case Study: Matrix Transpose

Staged via SMEM to coalesce GMEM addresses

32x32 blocks, single-precision values.

32x32 array in shared memory.

Initial implementation:

A warp reads a row from GMEM, writes to a row of SMEM.

Synchronize the threads in a block.

A warp reads a column of from SMEM, writes to a row in GMEM.
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Case Study: Matrix Transpose

32x32 SMEM array (.e.g. __shared__ float sm[32][32])

Warp accesses a row : No conflict.

Warp accesses a column : 32-way conflict.

Bank 0
Bank 1
…

Bank 31

31

210

31210

31210

Threads:
0            1            2                  31

20 1

31

Number indentifies which warp is accessing data.
Color indicates in which bank data resides.
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Case Study: Matrix Transpose

Solution: add a column for padding: 32x33
(.e.g. __shared__ float sm[32][33])

Warp accesses a row or a column: no conflict.

Bank 0
Bank 1
…

Bank 31

Number indentifies which warp is accessing data.
Color indicates in which bank data resides.

Threads:
0            1            2                  31       padding

31210

31210

31210

3120 1

Speedup
1.3x
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Summary: Shared Memory

Shared memory is a precious resource

Very high bandwidth (14 TB/s), much lower latency than Global Memory.

Data is programmer-managed, no evictions by hardware.

Volta/Ampere: up to 96/164KB of shared memory per thread block.

4B granularity.

Performance issues to look out for

Bank conflicts add latency and reduce throughput.

Use profiling tools to identify bank conflicts.
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10 Commandments of Performance Optimizations

1. Efficient Algorithm

2. Thread Divergence

3. Coalesced Memory Accesses

4. Shared Memory

5. Bank Conflict

6. Intrinsic Functions

7. Correct Data Types

8. Vectorized Operations

9. Using Tensor Cores

10. Using Streams




