
CME 213, ME 339—Spring 2021
Introduction to parallel computing using MPI, openMP, and CUDA

Eric Darve, ICME, Stanford

"Computers are useless. They can only give you answers." (Pablo Picasso)

1 / 51

Homework 1

Pre-requisite homework

Topics:

derived classes
polymorphism
standard library
testing

2 / 51

Submission

1. Submit your PDF on gradescope
2. For your computer code, copy your �les to cardinal
3. Run a Python script it submit code

Grading is done on gradescope

3 / 51

Deadline is Friday, April 9

4 / 51

Why parallel computing?

5 / 51

Parallel computing is omni-present

Any type of non-trivial computing requires parallel computing

6 / 51

Gordon Moore 1965: "the number of transistors
on a chip shall double every 18–24 months."
Accompanied by an increase in clock speed

7 / 51

Intel microprocessor trends

8 / 51

But

Increase in transistor density is limited by:

Leakage current increases
Power consumption increases
Heat generated increases

9 / 51

Memory access time has not been reduced at a rate comparable to the processing speed

↓

Go parallel!

Multiple cores on a processor

10 / 51

One/few

but

fast core(s)

Multicore

11 / 51

Many, but slower cores
GPUs

Manycore

12 / 51

Historical data on 1403 Intel microprocessors Historical data on 566 NVIDIA GPUs

Core increase; frequency plateau

13 / 51

Intel microprocessors NVIDIA GPUs

Memory wall; bandwidth and latency

14 / 51

More info at

https://pure.tue.nl/ws/portal�les/portal/3942529/771987.pdf

15 / 51

https://pure.tue.nl/ws/portalfiles/portal/3942529/771987.pdf

Parallel computing everywhere!

16 / 51

Intel Ice Lake 10 nm

 NVIDIA
Turing TU102 architecture

Multi and many core processors

17 / 51

18 / 51

19 / 51

Summit—Oak Ridge National Laboratory's 200 peta�op supercomputer

20 / 51

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Top 500 Supercomputers

21 / 51

22 / 51

Green 500

23 / 51

Vendor shares

24 / 51

25 / 51

More at

https://www.top500.org/

26 / 51

https://www.top500.org/

Example of a Parallel Computation

27 / 51

Parallel programs often look very different from sequential programs

28 / 51

Sequential

Parallel

29 / 51

Example: program to sum numbers

for (int i = 0; i < n; ++i)
{
 x = ComputeNextValue();
 sum += x;
}

30 / 51

We have cores that can compute and exchange data

31 / 51

Can we accelerate our calculation by splitting the work among the cores?

32 / 51

int r; /* thread number */
int b; /* number of entries processed */
int my_first_i = r * b;
int my_last_i = (r + 1) * b;
for (int my_i = my_first_i; my_i < my_last_i; my_i++) {
 my_x = ComputeNextValue();
 my_sum += my_x;
}

33 / 51

Not that simple

Each core has computed a partial sum

All these partial sums need to summed up together

34 / 51

Simplest approach:

have one "master" thread do all the work

35 / 51

if (r == 0) /* master thread */
{
 int sum = my_sum;
 for (int ro = 1; ro < p; ++ro)
 {
 int sum_ro;
 ReceiveFrom(&sum_ro, ro);
 sum += sum_ro;
 }
}
else /* worker thread */
{
 SendTo(&my_sum, 0);
}

36 / 51

That may not be enough

If we have many cores, this �nal sum may take a lot of time

37 / 51

38 / 51

This simple example illustrates the fact that it is di�cult for a compiler to parallelize a program.

Instead the programmer must often re-write his code having in mind that multiple cores will be computing in
parallel.

39 / 51

The purpose of this class is to teach you the most common parallel languages used in science and engineering.

40 / 51

Shared Memory Processor

41 / 51

Schematic

A number of processors or cores
A shared physical memory (global memory)
An interconnection network to connect the processors with the memory

42 / 51

43 / 51

Shared memory NUMA

In many cases, the program views the memory as a single addressable space.

In reality, the memory is physically distributed.

44 / 51

NUMA non-uniform memory access

Why? Faster access to memory

But, special hardware required to move data between memory banks

45 / 51

46 / 51

Bulldozer server (AMD)

Cache coherent NUMA (ccNUMA) uses inter-processor communication between cache controllers to keep a consistent memory image when more than one cache

stores the same memory location

47 / 51

Motherboard with 2 CPU sockets

48 / 51

Performance tip on multicore

Memory is key to developing high-performance multicore applications
Memory tra�c and time to access memory are often more important than �ops
Memory is hierarchical and complex

49 / 51

50 / 51

51 / 51

