
CME 213, ME 339—Spring 2021
Introduction to parallel computing using MPI, openMP, and CUDA

Eric Darve, ICME, Stanford

"Computers are useless. They can only give you answers." (Pablo Picasso)

1 / 51



Homework 1

Pre-requisite homework

Topics:

derived classes
polymorphism
standard library
testing
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Submission

1. Submit your PDF on gradescope
2. For your computer code, copy your �les to cardinal
3. Run a Python script it submit code

Grading is done on gradescope
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Deadline is Friday, April 9
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Why parallel computing?
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Parallel computing is omni-present

Any type of non-trivial computing requires parallel computing
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Gordon Moore 1965: "the number of transistors
on a chip shall double every 18–24 months."
Accompanied by an increase in clock speed
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Intel microprocessor trends
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But

Increase in transistor density is limited by:

Leakage current increases
Power consumption increases
Heat generated increases
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Memory access time has not been reduced at a rate comparable to the processing speed

↓

Go parallel!

Multiple cores on a processor
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One/few

but

fast core(s)

Multicore
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Many, but slower cores
GPUs

Manycore
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Historical data on 1403 Intel microprocessors Historical data on 566 NVIDIA GPUs

Core increase; frequency plateau
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Intel microprocessors NVIDIA GPUs

Memory wall; bandwidth and latency
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More info at

https://pure.tue.nl/ws/portal�les/portal/3942529/771987.pdf
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https://pure.tue.nl/ws/portalfiles/portal/3942529/771987.pdf


Parallel computing everywhere!
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Intel Ice Lake 10 nm

 NVIDIA
Turing TU102 architecture

Multi and many core processors
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Summit—Oak Ridge National Laboratory's 200 peta�op supercomputer
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https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/


Top 500 Supercomputers
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Green 500
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Vendor shares
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More at

https://www.top500.org/
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https://www.top500.org/


Example of a Parallel Computation
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Parallel programs often look very different from sequential programs
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Sequential

 
Parallel
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Example: program to sum numbers

for (int i = 0; i < n; ++i)
{
    x = ComputeNextValue();
    sum += x;
}
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We have  cores that can compute and exchange data
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Can we accelerate our calculation by splitting the work among the cores?
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int r; /* thread number */
int b; /* number of entries processed */
int my_first_i = r * b;
int my_last_i = (r + 1) * b;
for (int my_i = my_first_i; my_i < my_last_i; my_i++) {
    my_x = ComputeNextValue();
    my_sum += my_x;
}
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Not that simple

Each core has computed a partial sum

All these partial sums need to summed up together
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Simplest approach:

have one "master" thread do all the work
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if (r == 0) /* master thread */
{
    int sum = my_sum;
    for (int ro = 1; ro < p; ++ro)
    {
        int sum_ro;
        ReceiveFrom(&sum_ro, ro);
        sum += sum_ro;
    }
}
else /* worker thread */
{
    SendTo(&my_sum, 0);
}
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That may not be enough

If we have many cores, this �nal sum may take a lot of time
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This simple example illustrates the fact that it is di�cult for a compiler to parallelize a program.

Instead the programmer must often re-write his code having in mind that multiple cores will be computing in
parallel.
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The purpose of this class is to teach you the most common parallel languages used in science and engineering.
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Shared Memory Processor
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Schematic

A number of processors or cores
A shared physical memory (global memory)
An interconnection network to connect the processors with the memory
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Shared memory NUMA

In many cases, the program views the memory as a single addressable space.

In reality, the memory is physically distributed.
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NUMA non-uniform memory access

Why? Faster access to memory

But, special hardware required to move data between memory banks
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Bulldozer server (AMD)

 
Cache coherent NUMA (ccNUMA) uses inter-processor communication between cache controllers to keep a consistent memory image when more than one cache

stores the same memory location
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Motherboard with 2 CPU sockets
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Performance tip on multicore

Memory is key to developing high-performance multicore applications
Memory tra�c and time to access memory are often more important than �ops
Memory is hierarchical and complex
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