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"Computers are getting smarter all the time. Scientists tell us that soon they will be able to talk to us. 
(And by 'they', I mean 'computers'. I doubt scientists will ever be able to talk to us.)" 

(Dave Barry)
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Shared Memory Processor
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Schematic

A number of processors or cores
A shared physical memory (global memory)
An interconnection network to connect the processors with the memory
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Process

Process: program in execution

Comprises: the executable program along with all information that is necessary for the execution of the program.
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Thread

Thread: an extension of the process model.

Can be viewed as a "lightweight" process.

A thread may be described as a "procedure" that runs independently from the main program.
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In this model, each process may consist of multiple independent control �ows that are called threads
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Imagine a program that contains a number of procedures.

Then imagine these procedures being able to be scheduled to run simultaneously and/or independently by the
operating system.

This describes a multi-threaded program.
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Shared address space

All the threads of one process share the address space of the process, i.e., they have a common address space.

When a thread stores a value in the shared address space, another thread of the same process can access this
value.
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Threads
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Threads are everywhere

C++ threads (11): std::thread
C threads: Pthreads
Java threads: Thread thread = new Thread();
Python threads: 
t = threading.Thread(target=worker)
Cilk: x = spawn fib (n-1);
Julia: r = remotecall(rand, 2, 2, 2)
OpenMP
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C++ threads exercise

Open the �le cpp_thread.cpp

Type make to compile
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thread constructor

thread t2(f2, m);

Creates a thread that will run function f2 with argument m
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Reference argument

thread t3(f3, ref(k));

If a reference argument needs to be passed to the thread function, it has to be wrapped with std::ref.
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thread join

t1.join();
t2.join();
t3.join();

Calling thread waits (blocks) for t1 to complete 
(i.e., �nishes running f1)

Required before results of t1 calculations become "usable"
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Complete exercise with t4 and f4
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void f4() { /* todo */ }

int main(void)
{
    thread t4(); // todo
    // call f4() using thread t4; add m and k */
}
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How can we "return" values from asynchronous functions?

Di�culty: these functions can run at any time

1. How do we allocate resources to store return value?
2. How do we query the return value?
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Answer

Use promise and future
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promise

Holds value to be returned
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future

Allows to query the value
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promise/future exercise

Open cpp_thread.cpp

23 / 45



accumulate()

void accumulate(vector<int>::iterator first,
                vector<int>::iterator last,
                promise<int> accumulate_promise)
{
    int sum = 0;
    auto it = first;
    for (; it != last; ++it)
        sum += *it;
    accumulate_promise.set_value(sum); // Notify future
}
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main()

promise<int> accumulate_promise; // Will store the int
future<int> accumulate_future = accumulate_promise.get_future();
thread t5(accumulate, vec_1.begin(), vec_1.end(),
          move(accumulate_promise));
// move() will "move" the resources allocated for accumulate_promise

// future::get() waits until the future has a valid result and retrieves it
cout << "result of accumulate_future [21 expected] = " 
     << accumulate_future.get() << '\n';
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promise/future exercise

Complete 2nd part of cpp_thread.cpp

max_promise and get_max()
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What is the point of promise and future?

Why not use a reference and set the value?
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The function associated with a thread can run at any time.

So to make sure a variable has been updated,

we need to use my_thread.join()

28 / 45



promise/future is a more �exible mechanism

As soon as set_value is called on the promise,

the value can be acquired using the future
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promise/future allow �exible and e�cient communication between threads
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See for more information

https://en.cppreference.com/w/cpp/thread/thread
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Thread coordination
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The risks of multi-threaded programming
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A well-known bank company has asked you to implement a multi-threaded code to perform bank transactions

Goal: allow deposits
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1. Clients deposit money and the amount gets credited to their accounts.
2. But, a result of having multiple threads running concurrently the following can happen:
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Thread 0 Thread 1 Balance
Client requests a deposit Client requests a deposit $1000

Check current balance = $1000
Check current balance = $1000

Ask for deposit amount = $100 Ask for deposit amount = $300
Compute new balance = $1300

Compute new balance = $1100 Write new balance to account $1300
Write new balance to account $1100
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This is called a race condition

The �nal result depends on the precise order in which the instructions are executed
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Race condition

Occurs when you have a sequence like

READ/WRITE

or 

WRITE/READ

performed by di�erent threads
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Threads race to �ll-up a todo-list
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Thread 0 Thread 1
Thread 0 wants to add new to-do item.
Thread 0 closes lock. Add entry in list.

Thread 1 wants to use the lock. It has to wait.
Thread 0 is done with the to-do list. It opens the lock.

Thread 1 can close the lock and add entry in list.
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Mutex

A mutex can only be in two states: locked or unlocked.

Once a thread locks a mutex:

Other threads attempting to lock the same mutex are blocked.
Only the thread that initially locked the mutex has the ability to unlock it.
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This allows to protect regions of code.

Only one thread at a time can execute that code.
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Open mutex_demo.cpp
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void PizzaDeliveryPronto(int thread_id)
{
    g_mutex.lock();
    while (!g_task_queue.empty())
    {
        printf("Thread %d: %s\n", thread_id, g_task_queue.front().c_str());
        g_task_queue.pop();
        g_mutex.unlock();

        Delivery();
        g_mutex.lock();
    }
    g_mutex.unlock();
    return;
}
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