
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

"Computers are getting smarter all the time. Scientists tell us that soon they will be able to talk to us. 
(And by 'they', I mean 'computers'. I doubt scientists will ever be able to talk to us.)" 

(Dave Barry)

1 / 45



Shared Memory Processor

2 / 45



Schematic

A number of processors or cores
A shared physical memory (global memory)
An interconnection network to connect the processors with the memory

3 / 45



4 / 45



Process

Process: program in execution

Comprises: the executable program along with all information that is necessary for the execution of the program.

5 / 45



Thread

Thread: an extension of the process model.

Can be viewed as a "lightweight" process.

A thread may be described as a "procedure" that runs independently from the main program.

6 / 45



In this model, each process may consist of multiple independent control �ows that are called threads

7 / 45



Imagine a program that contains a number of procedures.

Then imagine these procedures being able to be scheduled to run simultaneously and/or independently by the
operating system.

This describes a multi-threaded program.

8 / 45



Shared address space

All the threads of one process share the address space of the process, i.e., they have a common address space.

When a thread stores a value in the shared address space, another thread of the same process can access this
value.

9 / 45



10 / 45



Threads

11 / 45



Threads are everywhere

C++ threads (11): std::thread
C threads: Pthreads
Java threads: Thread thread = new Thread();
Python threads: 
t = threading.Thread(target=worker)
Cilk: x = spawn fib (n-1);
Julia: r = remotecall(rand, 2, 2, 2)
OpenMP

12 / 45



C++ threads exercise

Open the �le cpp_thread.cpp

Type make to compile

13 / 45



thread constructor

thread t2(f2, m);

Creates a thread that will run function f2 with argument m

14 / 45



Reference argument

thread t3(f3, ref(k));

If a reference argument needs to be passed to the thread function, it has to be wrapped with std::ref.

15 / 45



thread join

t1.join();
t2.join();
t3.join();

Calling thread waits (blocks) for t1 to complete 
(i.e., �nishes running f1)

Required before results of t1 calculations become "usable"

16 / 45



Complete exercise with t4 and f4

17 / 45



void f4() { /* todo */ }

int main(void)
{
    thread t4(); // todo
    // call f4() using thread t4; add m and k */
}

18 / 45



How can we "return" values from asynchronous functions?

Di�culty: these functions can run at any time

1. How do we allocate resources to store return value?
2. How do we query the return value?

19 / 45



Answer

Use promise and future

20 / 45



promise

Holds value to be returned

21 / 45



future

Allows to query the value

22 / 45



promise/future exercise

Open cpp_thread.cpp

23 / 45



accumulate()

void accumulate(vector<int>::iterator first,
                vector<int>::iterator last,
                promise<int> accumulate_promise)
{
    int sum = 0;
    auto it = first;
    for (; it != last; ++it)
        sum += *it;
    accumulate_promise.set_value(sum); // Notify future
}

24 / 45



main()

promise<int> accumulate_promise; // Will store the int
future<int> accumulate_future = accumulate_promise.get_future();
thread t5(accumulate, vec_1.begin(), vec_1.end(),
          move(accumulate_promise));
// move() will "move" the resources allocated for accumulate_promise

// future::get() waits until the future has a valid result and retrieves it
cout << "result of accumulate_future [21 expected] = " 
     << accumulate_future.get() << '\n';

25 / 45



promise/future exercise

Complete 2nd part of cpp_thread.cpp

max_promise and get_max()

26 / 45



What is the point of promise and future?

Why not use a reference and set the value?

27 / 45



The function associated with a thread can run at any time.

So to make sure a variable has been updated,

we need to use my_thread.join()

28 / 45



promise/future is a more �exible mechanism

As soon as set_value is called on the promise,

the value can be acquired using the future

29 / 45



promise/future allow �exible and e�cient communication between threads

30 / 45



See for more information

https://en.cppreference.com/w/cpp/thread/thread

31 / 45

https://en.cppreference.com/w/cpp/thread/thread


Thread coordination

32 / 45



The risks of multi-threaded programming

33 / 45



A well-known bank company has asked you to implement a multi-threaded code to perform bank transactions

Goal: allow deposits

34 / 45



1. Clients deposit money and the amount gets credited to their accounts.
2. But, a result of having multiple threads running concurrently the following can happen:

35 / 45



Thread 0 Thread 1 Balance
Client requests a deposit Client requests a deposit $1000

Check current balance = $1000
Check current balance = $1000

Ask for deposit amount = $100 Ask for deposit amount = $300
Compute new balance = $1300

Compute new balance = $1100 Write new balance to account $1300
Write new balance to account $1100

36 / 45



This is called a race condition

The �nal result depends on the precise order in which the instructions are executed

37 / 45



Race condition

Occurs when you have a sequence like

READ/WRITE

or 

WRITE/READ

performed by di�erent threads

38 / 45



Threads race to �ll-up a todo-list

39 / 45



Thread 0 Thread 1
Thread 0 wants to add new to-do item.
Thread 0 closes lock. Add entry in list.

Thread 1 wants to use the lock. It has to wait.
Thread 0 is done with the to-do list. It opens the lock.

Thread 1 can close the lock and add entry in list.

40 / 45



Mutex

A mutex can only be in two states: locked or unlocked.

Once a thread locks a mutex:

Other threads attempting to lock the same mutex are blocked.
Only the thread that initially locked the mutex has the ability to unlock it.

41 / 45



This allows to protect regions of code.

Only one thread at a time can execute that code.

42 / 45



43 / 45



Open mutex_demo.cpp

44 / 45



void PizzaDeliveryPronto(int thread_id)
{
    g_mutex.lock();
    while (!g_task_queue.empty())
    {
        printf("Thread %d: %s\n", thread_id, g_task_queue.front().c_str());
        g_task_queue.pop();
        g_mutex.unlock();

        Delivery();
        g_mutex.lock();
    }
    g_mutex.unlock();
    return;
}

45 / 45


