
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Controlling complexity is the essence of computer programming.” (Brian Kernigan)

1 / 46

2 / 46

C++ threads are great for low-level multicore programming

But too general and complicated for engineering applications

3 / 46

Two common scenarios

1. For loop: partition the loop into chunks
Have each thread process one chunk.

2. Hand-o� a block of code to a separate thread

4 / 46

OpenMP simpli�es the programming signi�cantly.

In many cases, adding one line is su�cient to make it run in parallel.

5 / 46

OpenMP is the standard approach in scienti�c computing for multicore processors

6 / 46

What is OpenMP?

Application Programming Interface (API)

Jointly de�ned by a group of major computer hardware and software vendors

7 / 46

Portable, scalable model for developers of shared memory parallel applications

Supports C/C++ and Fortran on a wide variety of computers

8 / 46

OpenMP website
https://openmp.org

Wikipedia
https://en.wikipedia.org/wiki/OpenMP

LLNL tutorial
https://computing.llnl.gov/tutorials/openMP/

9 / 46

https://openmp.org/
https://en.wikipedia.org/wiki/OpenMP
https://computing.llnl.gov/tutorials/openMP/

10 / 46

Parallel Universe Magazine Issue 18

Download PDF of paper

11 / 46

https://software.intel.com/content/www/us/en/develop/download/parallel-universe-magazine-issue-18-june-2014.html?wapkw=parallel_mag_issue18
https://software.intel.com/content/dam/develop/public/us/en/documents/parallel-mag-issue18.pdf

Compiling your code

Header �le:

#include <omp.h>

12 / 46

Compiler Flag
gcc
g++
g77

gfortran

-fopenmp

icc
icpc
ifort

-openmp

13 / 46

Installation on macOS

14 / 46

Option 1: libomp

$ brew install libomp

Use the system compiler /usr/bin/g++

Compile with options

-I/usr/local/include -Xpreprocessor -fopenmp
-L/usr/local/lib -lomp

15 / 46

Option 2: gcc

$ brew install gcc

Compiler: /usr/local/bin/g++-9

Flag: -fopenmp

16 / 46

Which version of openMP do you have?

This determines the set of features available

$ echo | cpp -I/usr/local/include -Xpreprocessor -fopenmp -dM | grep OPENMP
#define _OPENMP 201511

17 / 46

Mapping

Year OpenMP version
200505 2.5
200805 3.0
201107 3.1
201307 4.0
201511 4.5
201811 5.0

18 / 46

Parallel regions

19 / 46

#pragma omp parallel

This is the basic building block

This is not how OpenMP is used in most cases

Serves simply as an introduction

20 / 46

#pragma omp parallel

The block of code that follows is executed

by all threads in the team

21 / 46

22 / 46

This is called the

fork-join model

23 / 46

Computing

hello_world_openmp.cpp

24 / 46

https://github.com/EricDarve/cme213-spring-2021/blob/main/Code/Lecture_04/hello_world_openmp.cpp

#pragma omp parallel num_threads(nthreads)
{
 long tid = omp_get_thread_num();
 // Only thread 0 does this
 if (tid == 0)
 {
 int n_threads = omp_get_num_threads();
 printf("[info] Number of threads = %d\n", n_threads);
 }
 // Print the thread ID
 printf("Hello World from thread = %ld\n", tid);

 // Compute digits of pi
 DoWork(tid, ndigits[tid], etime[tid]);
}
// All threads join the master thread and terminate

25 / 46

Choose your compiler in Make�le

$ make

$./hello_world_openmp

26 / 46

https://github.com/EricDarve/cme213-spring-2021/blob/main/Code/Lecture_04/Makefile

Sample output

Let's compute pi = 3.1415926535897932384626433832795028841...
[info] Number of threads = 8
Hello World from thread = 0
Thread 0 approximated Pi as 3141592653589793
Hello World from thread = 1
Thread 1 approximated Pi as 314159265358979323846264
...
Thread 7 approximated Pi as 31415926535897932384626433832795028841...
Thread 0 computed 16 digits of pi in 67 musecs (4.188 musec per digit)
Thread 1 computed 24 digits of pi in 16 musecs (0.667 musec per digit)
...
Thread 7 computed 72 digits of pi in 68 musecs (0.944 musec per digit)

27 / 46

Formula used to approximate

28 / 46

Common use case: for loop

This example cover 99% of the needs for scienti�c computing

29 / 46

for_loop_openmp.cpp

#pragma omp parallel for
 for (int i = 0; i < n; ++i)
 z[i] = x[i] + y[i];

30 / 46

https://github.com/EricDarve/cme213-spring-2021/blob/main/Code/Lecture_04/for_loop_openmp.cpp

Exercise

matrix_prod_openmp.cpp

Parallelize the matrix-matrix product

Experiment with di�erent options

./matrix_prod_openmp -p PROC

PROC number of threads to use

31 / 46

https://github.com/EricDarve/cme213-spring-2021/blob/main/Code/Lecture_04/matrix_prod_openmp.cpp

for loops can be scheduled in di�erent ways by the library

#pragma omp for schedule(kind,chunk_size)

kind: static, dynamic, guided

32 / 46

static

chunk size is �xed (chunk_size)

round-robin assignment

0, 1, 2, 3, 0, 1, 2, 3, ...

Pro: low overhead

Con: assumes that running time is the same for all chunks

33 / 46

dynamic

Each thread executes a chunk

Then, requests another chunk until none remain

Pro: low overhead, adapts to threads that run at di�erent speeds

Con: last thread may terminate long after the others

34 / 46

guided

Chunk size is di�erent for each chunk

Each successive chunk is smaller than the last

Pro: all threads tend to �nish at the same time

Con: high overhead for scheduling

35 / 46

36 / 46

nowait

#pragma omp parallel
{
 #pragma omp for nowait
 for (i=1; i<n; i++)
 b[i] = (a[i] + a[i-1]) / 2.0;
 #pragma omp for nowait
 for (i=0; i<m; i++)
 y[i] = sqrt(z[i]);
}

37 / 46

collapse

#pragma omp for collapse(2) private(i, k, j)
 for (k=kl; k<=ku; k+=ks)
 for (j=jl; j<=ju; j+=js)
 for (i=il; i<=iu; i+=is)
 bar(a,i,j,k);

38 / 46

OpenMP clause

Recall in C++ threads:

Variables passed as argument to a thread are shared

Variables inside the function that a thread is executing are private to that thread

39 / 46

OpenMP makes some reasonable default choices

But they can be changed using shared and private

40 / 46

shared_private_openmp.cpp

41 / 46

https://github.com/EricDarve/cme213-spring-2021/blob/main/Code/Lecture_04/shared_private_openmp.cpp

Variables declared before the block are shared

int shared_int = -1;
#pragma omp parallel
{
 printf("Thread ID %2d | shared_int = %d\n", omp_get_thread_num(),
 shared_int);
}

42 / 46

private clause

int is_private = -2;

#pragma omp parallel private(is_private)
{
 const int rand_tid = rand();
 is_private = rand_tid;
 printf("Thread ID %2d | is_private = %d\n", omp_get_thread_num(),
 is_private);
 assert(is_private == rand_tid);
}

43 / 46

Data sharing attribute clause

Most common:

shared(list)
private(list)

Less common: firstprivate, lastprivate, linear

44 / 46

firstprivate: private variable; initialized using value when construct is encountered

lastprivate: set equal to the private version of whichever thread executes the �nal iteration

linear: see p. 25 of speci�cations; variable is private and has a linear relationship with respect to the iteration
space of a loop associated with the construct

45 / 46

https://www.openmp.org/wp-content/uploads/openmp-examples-5-0-1.pdf#page=34

https://www.openmp.org/spec-html/5.1/openmp.html

PDF

46 / 46

https://www.openmp.org/spec-html/5.1/openmp.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf

