
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Optimism is an occupational hazard of programming; feedback is the treatment.” (Kent Beck)

1 / 46

Sorting algorithms on shared memory computers

2 / 46

Homework 2 focuses on radix sort

3 / 46

Applies to integers or �oats only

Uses buckets

Partitions the bits into small groups

Order using groups of bits and buckets

4 / 46

Radix sort animations

Musical demo MSD

Musical demo LSD

Most/least signi�cant digit

5 / 46

https://www.youtube.com/watch?v=Tmq1UkL7xeU
https://www.youtube.com/watch?v=LyRWppObda4

Quicksort

One of the fastest sorting algorithms

6 / 46

Quicksort algorithm

Divide and conquer approach. Divide step:

Choose a pivot
Separate sequence into 2 sub-sequences with all elements smaller than and greater than

Conquer step:

Sort the two subsequences

7 / 46

8 / 46

def quicksort(A,l,u):
 if l < u-1:
 x = A[l]
 s = l
 for i in range(l+1,u):
 if A[i] <= x: # Swap entries smaller than pivot
 s = s+1
 A[s], A[i] = A[i], A[s]
 A[s], A[l] = A[l], A[s]
 quicksort(A,l,s)
 quicksort(A,s+1,u)

Python code

9 / 46

https://github.com/EricDarve/cme213-spring-2021/tree/main/Code/Lecture_06

On average, it runs very fast, even faster than mergesort.

It requires no additional memory

Musical demo LL pointers

Musical demo LR pointers

Musical demo Quicksort ternary

10 / 46

https://www.youtube.com/watch?v=9IqV6ZSjuaI
https://www.youtube.com/watch?v=8hEyhs3OV1w
https://www.youtube.com/watch?v=q4wzJ_uw4aE

Some disadvantages

Worst-case running time is when input is already sorted

Not stable

11 / 46

12 / 46

13 / 46

Mergesort

1. Subdivide the list into n sub-lists (each with one element).

2. Sub-lists are progressively merged to produce larger ordered sub-lists.

14 / 46

15 / 46

Musical demo

16 / 46

https://www.youtube.com/watch?v=ZRPoEKHXTJg

Parallel mergesort

When there are many sub-lists to merge, the parallel implementation is straightforward: assign each sub-list to a
thread.

When we get few but large sub-lists, the parallel merge becomes di�cult.

17 / 46

Merging large chunks

Subdivide the merge into several smaller merges that can be done concurrently.

18 / 46

19 / 46

Bucket and sample sort

20 / 46

Bucket sort

Sequence of integers in the interval

1. Split into sub-intervals
2. Move each element to the appropriate bucket (pre�x sum)
3. Sort each bucket in parallel!

21 / 46

This process may lead to intervals that are unevenly �lled.

Improved version: splitter sort.

22 / 46

23 / 46

Sorting networks

Building block: compare-and-exchange (COEX)

In sorting networks, the sequence of COEX is independent of the data

One of their advantages: very regular data access

24 / 46

A novel sorting algorithm for many-core architectures based on adaptive bitonic sort, H. Peters, O. Schulz-
Hildebrandt, N. Luttenberger

25 / 46

Bitonic sequence

First half ↗, second half ↘, or

First half ↘, second half ↗

26 / 46

There is a fast algorithm to partially "sort" a bitonic sequence

Bitonic compare

27 / 46

Bitonic compare

First half

Second half

28 / 46

29 / 46

Output

Two bitonic sequences

Left is smaller than right

30 / 46

Build a bitonic sorting network to sort the entire array

Process:

1. Start from small bitonic sequences
2. Use compare and merge to get longer bitonic sequences
3. Repeat until sorted

31 / 46

32 / 46

Complexity

 passes

Musical demo

Python code

33 / 46

https://www.youtube.com/watch?v=r-erNO-WICo
https://github.com/EricDarve/cme213-spring-2021/tree/main/Code/Lecture_06

Exercise

bitonic_sort_lab.cpp Open this code to start the exercise
bitonic_sort.cpp Solution with OpenMP
bitonic_sort_seq.cpp Reference sequential implementation
Code

34 / 46

https://github.com/EricDarve/cme213-spring-2021/tree/main/Code/Lecture_06

-DNDEBUG no-debug option

true by default

Remove -DNDEBUG from Makefile to print additional information

35 / 46

Outer i loop cannot be parallelized

Step 1: parallelize j loop

for (int j = 0; j < n; j += i)

Call BitonicSortSeq(...) inside j loop

36 / 46

Step 2: split i loop into small chunks and large chunks

for (int i = 2; i <= chunk; i <<= 1){}

for (int i = chunk << 1; i <= n; i <<= 1){}

37 / 46

38 / 46

Step 3: large-chunk i loop

for (int i = chunk << 1; i <= n; i <<= 1)

Call BitonicSortPar(j, i, seq, up, chunk)

39 / 46

BitonicSortPar()

split_length is very large

Step 4: parallelize i loop in BitonicSortPar()

for (int i = start; i < start + split_length; i++)

40 / 46

Ultimately fails when split_length becomes small again

Step 5: recursively call BitonicSortPar only if split_length > chunk

Add

if (split_length > chunk){}

around the two recursive calls to BitonicSortPar()

41 / 46

42 / 46

Code is now wrong; one more pass is needed!

Go back to the i loop

for (int i = chunk << 1; i <= n; i <<= 1){}

in main()

43 / 46

Step 6: add

#pragma omp parallel for
for (int j = 0; j < n; j += chunk)
{
 bool up = ((j / i) % 2 == 0);
 BitonicSortSeq(j, chunk, seq, up);
}

at the end of the i loop block

for (int i = chunk << 1; i <= n; i <<= 1){}

44 / 46

The exercise is complete.

Your code should now produce the correct result!

The running time should decrease as you increase the number of threads.

Run using

export OMP_NUM_THREADS=4; ./bitonic_sort

45 / 46

darve@omp:~$ export OMP_NUM_THREADS=1; ./bitonic_sort
Size of array: 8388608
Size of chunks: 8388608
Number of chunks: 1
Number of threads: 1
Elapsed time = 3.24 sec, p T_p = 3.24.
darve@omp:~$ export OMP_NUM_THREADS=4; ./bitonic_sort
Size of array: 8388608
Size of chunks: 2097152
Number of chunks: 4
Number of threads: 4
Elapsed time = 0.83 sec, p T_p = 3.33.

46 / 46

