
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“If debugging is the process of removing bugs, then programming must be the process of putting them in.” (Edsger
W. Dijkstra)

1 / 47



CME 213 so far:

C++ threads
OpenMP: for loop and task
Sorting algorithms on shared memory

Onwards to GPU computing!

2 / 47



3 / 47



Reference

https://github.com/karlrupp/cpu-gpu-mic-comparison

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

4 / 47

https://github.com/karlrupp/cpu-gpu-mic-comparison
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/


5 / 47



6 / 47



7 / 47



8 / 47



9 / 47



Example: Volta V100

8.2 tera�ops double-precision performance
16.4 tera�ops single-precision performance
130 tera�ops for tensor (deep learning)
1134 GB/sec memory bandwidth
250 Watts power

10 / 47



11 / 47



12 / 47



What is the technology behind GPU processors?

13 / 47



It’s started with 3D graphics

14 / 47



GPUs were designed to perform the same instruction on a large amount of data

Graphics processing == scienti�c computing

15 / 47



The multicore processor

Fast processor because:

Pipelining of execution
Out of order execution
Branch prediction
Pre-fetching
Large amount of multilevel cache
...

16 / 47



The GPU processor

Many computing units operating in parallel

Ideal for simple but repetitive tasks

17 / 47



Great for:

Dense linear algebra
Finite-di�erence
Neural network

Bad when calculation involves branching

18 / 47



The secret behind the magic

Striking the right trade-o�

More computing units means you need to give up something

19 / 47



No processor space dedicated to complex optimizations, e.g., out-of-order execution
Cache/memory is limited because it has to be shared amongst the threads

20 / 47



Light threads: hardware supports the ability to switch threads every cycle
Limited logic for program control: 32 threads are grouped into warps; all threads in warp execute the same
instruction at the same time.

21 / 47



Each computing unit is less powerful but there are more of them.

22 / 47



23 / 47



Micro-architecture Release Compute Capability GPU code name
G70 2005

Tesla 2006 1.0-1.3 GXX, GT2XX
Fermi 2010 2.0-2.1 GFXXX
Kepler 2012 3.0-3.7 GKXXX

Maxwell 2014 5.0–5.3 GMXXX
Pascal 2016 6.0-6.2 GPXXX
Volta 2017 7.0-7.2 GVXXX

Turing 2018 7.5 TUXXX
Ampere 2020 8.0-8.6 GAXXX
Lovelace ? ? ?
Hopper ? ? ?

24 / 47



 
Tesla GPUs

25 / 47



26 / 47



27 / 47



Quadro RTX 6000 in icme-gpu

4,608 parallel processing cores; Turing architecture

28 / 47



72 Streaming multiprocessors (6 graphics processing clusters)
4,608 cores (64 per SM)
Total global memory: 24 GB GDDR6
Bandwidth: 672 GB/sec
Peak performance: single 16.3 TFLOPS; double 510 GFLOPS (1/32)
Compute capability: 7.5
Power: 295 W
Architecture: Turing
L1 Cache: 96 KB (per SMX); L2 Cache: 6,144 KB

29 / 47



Quadro RTX 6000

Turing architecture

Whitepaper

Specs

30 / 47

https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.techpowerup.com/gpu-specs/quadro-rtx-6000.c3307


NVIDIA GPUs are di�erent from conventional processors.

They only work as co-processors.

This means you need a host processor (e.g., Intel Xeon).

31 / 47



Your program runs on the host and uses the CUDA API to move data back and forth to the GPU and run programs
on the GPU.

You cannot log on the GPU directly or run an OS on the GPU.

32 / 47



33 / 47



You cannot program a GPU without understanding the architecture of the processor.

34 / 47



NVIDIA Turing

TU102 GPU architecture

35 / 47



36 / 47



GPC: graphics processing cluster
TPC: texture processing cluster
SM: Streaming Multiprocessor
RT core: ray-tracing core
Tensor cores

37 / 47



38 / 47



Tensor Core 4x4 Matrix Multiply and Accumulate

39 / 47



Hierarchical breakdown of threads

40 / 47



Warp

Bottom-most level: 32 cores = 32 threads, grouped in a warp.

The hardware is optimized to have all threads in a warp execute the same instruction at the same time.

SIMT (single instruction multiple threads) model.

41 / 47



Block

Groups of warps form a block. A block executes on 1 SM (streaming multiprocessor).

Threads within a block have some ability to exchange data and synchronize.

42 / 47



43 / 47



Grid

Collection of many blocks constitute the entire "dataset" that will be operated on by a kernel.

44 / 47



45 / 47



46 / 47



Execution model

47 / 47


