
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“There are two ways to write error-free programs; only the third one works.” (Alan J. Perlis)

1 / 75

Let's get started!

2 / 75

How to transfer the �les

scp
sshfs; Sherlock instructions

3 / 75

https://www.sherlock.stanford.edu/docs/storage/data-transfer/#sshfs

Demo

4 / 75

ssh darve@icme-gpu.stanford.edu
You have to use VPN if you are o�-campus.

5 / 75

Make sure the CUDA library and compiler are loaded.

module avail
module list
module load cuda
module show cuda
module unload cuda
module purge

6 / 75

Demo

7 / 75

Recommended: add

loading CUDA modules
module load cuda

at the end of .bashrc in your HOME directory. This will load the module you need when you log in.

8 / 75

You will �nd that it is annoying to repeatedly log in on the cluster and provide your password and complete the
dual authentication process.

A useful command is screen.

It allows running multiple shells.

9 / 75

To start screen: $ screen. Then use the following shortcuts:

Shortcut Command
Ctrl+a c Create a new window (with shell)
Ctrl+a " List all window
Ctrl+a 0 Switch to window 0 (by number)
Ctrl+a | Split current region vertically into two regions
Ctrl+a S Split current region horizontally into two regions
Ctrl+a tab Switch the input focus to the next region
Ctrl+a X Delete window but keep shell

Ctrl+a Ctrl+a Toggle between the current and previous region
Ctrl+a k Close the current shell
Ctrl+a \ Close all shells
Ctrl+a ? Help

10 / 75

More advanced commands

11 / 75

https://linuxize.com/post/how-to-use-linux-screen/

Basic SLURM commands

sinfo

Demo

12 / 75

sbatch script.sh

#!/bin/bash
#SBATCH -o job_%j.out
#SBATCH -p CME
#SBATCH --gres=gpu:1

13 / 75

Batch submission:

sbatch script.sh; squeue

Demo

14 / 75

Blocking command:

srun -p CME --gres=gpu:1 ./deviceQuery

or

srun -o slurm.sh.out -p CME --gres=gpu:1 ./deviceQuery

or

srun -p CME --gres=gpu:1 ./script.sh

15 / 75

What not to do!

srun -p CME --gres=gpu:1 --pty /bin/bash

This reserves a node for you "inde�nitely."

Demo

16 / 75

Controlling the number of GPUs you have access to:

srun -p CME --gres=gpu:2 ./deviceQuery

srun -p CME --gres=gpu:3 ./deviceQuery

17 / 75

Device 0: "Quadro RTX 6000"
 CUDA Driver Version / Runtime Version 11.0 / 11.0
 CUDA Capability Major/Minor version number: 7.5
 Total amount of global memory: 24220 MBytes (25396838400 bytes)
 (72) Multiprocessors, (64) CUDA Cores/MP: 4608 CUDA Cores
 L2 Cache Size: 6291456 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 1024
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

18 / 75

Other SLURM commands

squeue
scancel

19 / 75

Let's run

./bandwidthTest

20 / 75

[CUDA Bandwidth Test] - Starting...
Running on...

 Device 0: Quadro RTX 6000
 Quick Mode

 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
 Transfer Size (Bytes) Bandwidth(GB/s)
 32000000 12.6

 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
 Transfer Size (Bytes) Bandwidth(GB/s)
 32000000 13.2

 Device to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
 Transfer Size (Bytes) Bandwidth(GB/s)
 32000000 541.0

Result = PASS

21 / 75

firstProgram.cu

22 / 75

checkCudaErrors(...)

CUDA functions often fail silently

Use this to check for errors before continuing

23 / 75

 int* d_output;

 cudaMalloc(&d_output, sizeof(int) * N);

 kernel<<<1, N>>>(d_output);

 vector<int> h_output(N);
 cudaMemcpy(&h_output[0], d_output, sizeof(int) * N,
 cudaMemcpyDeviceToHost);

 cudaFree(d_output);

24 / 75

kernel<<<1, N>>>(d_output);

N : number of threads to launch for function kernel

Threads are numbered 0 to .

25 / 75

__device__ __host__
int f(int i) {
 return i*i;
}

__global__
void kernel(int* out) {
 out[threadIdx.x] = f(threadIdx.x);
}

26 / 75

global / host / device

???

27 / 75

__global__ kernel will be

Executed on the device
Callable from the host

28 / 75

__host__ kernel will be

Executed on the host
Callable from the host

29 / 75

__device__ kernel will be

Executed on the device
Callable from the device only

30 / 75

Get information about the current thread

Use the built-in variable threadIdx

We will learn more about this later

31 / 75

Run

darve@icme-gpu:~/Lecture_08$ srun -p CME --gres=gpu:1 ./firstProgram
Entry 0, written by thread 0
Entry 9, written by thread 3
...
Entry 961, written by thread 31

32 / 75

darve@icme-gpu:~/Lecture_08$ srun -p CME --gres=gpu:1 ./firstProgram -N=1024
Using 1024 threads = 32 warps
Entry 0, written by thread 0
Entry 10404, written by thread 102
Entry 41616, written by thread 204
...
Entry 842724, written by thread 918
Entry 1040400, written by thread 1020
Entry 1046529, written by thread 1023

33 / 75

darve@icme-gpu:~/Lecture_08$ srun -p CME --gres=gpu:1 ./firstProgram -N=1025
CUDA error at firstProgram.cu:48 code=9
 (cudaErrorInvalidConfiguration) "cudaGetLastError()"
Using 1025 threads = 33 warps
srun: error: icmet01: task 0: Exited with exit code 1

!!!

34 / 75

Let's consult the Quadro RTX 6000 data sheet

Quadro RTX 6000

35 / 75

https://ericdarve.github.io/cme213-spring-2021/Code/quadro.txt

kernel<<<1, N>>>(d_output);

N cannot be greater than 1,024.

36 / 75

kernel<<<1, N>>>(d_output);

What we need is

kernel<<<num_blocks, block_size>>>(d_output);

37 / 75

kernel<<<num_blocks, block_size>>>(d_output);

block_size can be at most 1,024

Use more blocks!

38 / 75

Calculation should be organized into:

blocks that �t on each SM (limited number of threads)
several blocks forming a grid (so that an "unlimited" number of threads can be used)

39 / 75

40 / 75

De�ning dimensions

dim3 block_size(Nx);
dim3 num_blocks(Mx);

dim3 block_size(Nx, Ny);
dim3 num_blocks(Mx, My);

dim3 block_size(Nx, Ny, Nz);
dim3 num_blocks(Mx, My, Mz);

kernel<<<num_blocks, block_size>>>(d_output);

41 / 75

Let's use this to write a program to add two matrices.

42 / 75

43 / 75

dim3 th_block(32,n_thread/32);

int blocks_per_grid_x = (n + th_block.x - 1) / th_block.x;
int blocks_per_grid_y = (n + th_block.y - 1) / th_block.y;

dim3 num_blocks(blocks_per_grid_x, blocks_per_grid_y);

Add<<<num_blocks, th_block>>>(n, d_a, d_b, d_c);

44 / 75

Math formula for number of blocks

num_blocks =
(num_threads_total + num_thread_per_block - 1)

/ num_thread_per_block

Try out with
num_threads_total = 5

num_thread_per_block = 4

45 / 75

__global__
void Add(int n, int* a, int* b, int* c) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 if(i < n && j < n) {
 c[n*i + j] = a[n*i + j] + b[n*i + j];
 }
}

46 / 75

Built-in variable Description
threadIdx thread index in block
blockDim number of threads in a block
blockIdx block index in grid
gridDim number of blocks in grid
warpSize number of threads in a warp

47 / 75

STL vector cannot be used with CUDA.

CUDA has its own mechanism to allocate and manage memory.

See Thrust for an STL like vector implementation in CUDA.

48 / 75

https://docs.nvidia.com/cuda/thrust/index.html

Compiling CUDA code

49 / 75

50 / 75

Most CPUs o�er binary code compatibility and rely on a published instruction set architecture.

A given compiled code can run on many di�erent processors.

51 / 75

The situation is di�erent with GPUs.

GPU improvements mean that binaries for di�erent processors are incompatible.

52 / 75

Compilation happens in two stages:

1. Code for virtual architecture is generated; PTX
2. Code for real architecture is generated

PTX assembly code relies on a speci�c set of features or GPU capabilities

Real architecture: binary code that can be executed on a given GPU

53 / 75

54 / 75

File extension Description
.cu CUDA source �le
.ptx PTX intermediate assembly �le
.cubin CUDA device code binary �le
.fatbin CUDA fat binary �le that may contain multiple PTX and CUBIN �les

55 / 75

When compiling:

one virtual architecture is chosen
some (or none) real architectures are speci�ed

56 / 75

If a real architecture is compiled and matches the GPU, the binary is loaded and runs!

If a real architecture for the GPU is missing, a matching GPU binary code is generated when the application is
launched using the PTX code.

This is called just-in-time compilation.

57 / 75

Virtual architecture names start with compute_

Real architecture names start with sm_

58 / 75

Example

nvcc a.cu --gpu-architecture=compute_50 --gpu-code=sm_50,sm_75

Use virtual architecture compute_50

Generate code for two GPUs: sm_50, sm_75

59 / 75

On icme-gpu, try

--gpu-architecture=compute_50 --gpu-code=sm_50

60 / 75

--gpu-architecture=compute_50 --gpu-code=sm_50

Fails because our GPU is sm_75

61 / 75

Try

--gpu-architecture=compute_50 --gpu-code=sm_75

Success

62 / 75

--gpu-architecture=compute_75 --gpu-code=sm_50

Fails because sm_50 does not support compute_75 features

63 / 75

Note on --gpu-architecture

--gpu-architecture alone does not trigger assembly of the corresponding PTX.

That is the role of --gpu-code.

64 / 75

Try

--gpu-architecture=compute_50 --gpu-code=compute_50,sm_50

65 / 75

Succeeds

Why?

66 / 75

Wrong sm_50; but PTX for compute_50 is loaded

Can be JIT compiled for sm_75

Win!

67 / 75

--gpu-architecture=compute_75 --gpu-code=sm_75

Compile just for our GPU

68 / 75

shorthands

--gpu-architecture=compute_75

is equivalent to

--gpu-architecture=compute_75 --gpu-code=compute_75

Only generate and embed PTX

JIT required for all GPUs

69 / 75

--gpu-architecture=sm_75 (a real architecture option)

is equivalent to

--gpu-architecture=compute_75 --gpu-code=compute_75,sm_75

Generate binary for sm_75 + PTX for JITs on GPUs that support compute_75

70 / 75

Recommended

--gpu-architecture=compute_75 --gpu-code=sm_75

Shorter option (which embeds the PTX with the binary)

--gpu-architecture=sm_75 or -arch=sm_75

71 / 75

List of virtual architectures

List of real architectures

72 / 75

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#virtual-architecture-feature-list
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list

Compiler options Description
-g Debug on the host
-G Debug on the device (CUDA-gdb, Nsight Eclipse Edition)
-pg Pro�ling info for use with gprof (Linux)

-Xcompiler Options for underlying gcc compiler
-O Optimization level

nvcc --help

73 / 75

The old way:

Visual Pro�ler

The new way:

NVIDIA Nsight Systems for GPU and CPU sampling
and tracing

NVIDIA Nsight Compute for GPU kernel pro�ling

74 / 75

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute

CUDA-MEMCHECK

Tool Description
memcheck Memory access error and leak detection
racecheck Shared memory data access hazard detection
initcheck Unitialized device global memory access detection

synccheck Thread synchronization hazard detection

75 / 75

https://docs.nvidia.com/cuda/cuda-memcheck/index.html

