CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

€ Stanford University

“Software is like entropy: It is difficult to grasp, weighs nothing, and obeys the Second Law of Thermodynamics; i.e.,
it always increases.” (Norman Augustine)

1761

Concurrency and latency

2 /61

Imagine you are a pencil manufacturer.
You outsource your manufacturing plants to China but your market is in the US.

How do you organize the logistics of the transport?

Russia

aaaaaa

yyyyyy

India Myanmar,

Vietnam Philippines b cangu

........

3/61

Concurrency is used to hide long latencies:

* memory access
e floating point units
e any long sequence of operations

4/61

Processors are optimized in the same way

Hide latency through concurrency

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

L

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

time

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

5/61

How to maximize concurrency?

e Have as many live threads as possible
e Instruction-level parallelism

6/61

Hardware limits

e Max dim. of grid: y/z 65,535 (x is large, 231 — 1)
e Max dim. of block: x/y 1,024; z 64

e Max # of threads per block: 1,024

e Max blocks per SM: 16

e Max resident warps: 32

e Max threads per SM: 1,024

e # of 4-byte registers per SM: 64 K

e Max shared mem per SM: 64 KB

Spreadsheet

7761

https://ericdarve.github.io/cme213-spring-2021/Code/quadro.txt

How can we make sense of this?

8/61

CUDA API

Achieve best potential occupancy; recommended parameter selections

cudaOccupancyMaxActiveBlocksPerMultiprocessor

Reports an occupancy prediction based on the block size and shared memory usage of a kernel

9/61

cudaOccupancyMaxPotentialBlockSize
cudaOccupancyMaxPotentialBlockSizeVariableSMem

Returns the minimum grid size and recommended block size to achieve maximum occupancy

10/ 61

Occupancy spreadsheet!

CUDA Occupancy Calculator

11761

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

A B [} D El B G H | J K L M N o B Q R S T U \

CUDA Occu pancy Calculator Click Here for detailed instructions on how to use this occupancy calculator.
For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

Your usage is indi by the red tri; on the graphs. The other data points
Hell represent the range of p ible block sizes, regi: counts, and shared memory allocation.

Impact of Varying Block Size Impact of Varying Shared Memory Usage Per Block
My Block Size, 256

©ONO AN

Shared Memory, 4352

32
Hell

N

16 (Don't edit anything below this line)

(#warps)

Help!

Multiprocessor Warp Occupancy
(# warps)
>
Multiprocessor Warp Occupancy

0
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Threads Per Block

25 Physical Limits for GPU Compute Capability:

Impact of Varying Register Count Per Thread

Shared Memory Per Block
My Register Count, 30

32

—32768 —5536

24

Warp O
(# warps)

= Allocatable
41 Allocated Resources Per Block Limit Per SM__ Blocks Per SM 3
42 \Warps (Threads Per Block / Threads Per Warp) 8 32 4
43 Registers (Warp limit per SM due to per-warp reg count) 8 64 8 0 S
44 Shared Memot S 4352 65536 15
45 |Note: SMis an iation for i i Registers

47 Maximum Thread Blocks Per Multiprocessor Blocks/SM _ * Warps/Block = Warps/SM
48 ﬁ
49 |Limited by Registers per Multiprocessor 8

50 |Limited by Shared Memory per Multiprocessor | 15 | | |
51 |Note: Occupancy limiter is shown in orange Physical Max Warps/SM = 32
52 Occupancy =32/32=100%

12761

Command line

$ nvcc --ptxas-options=-v -o transpose transpose.cu

—-—ptxas-options=-v

13761

Output

ptxas info : Compiling entry function '...fastTranspose...' for 'sm_75'
ptxas info : Function properties for ...fastTranspose...

O bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 30 registers, 4224 bytes smem, 384 bytes cmem[0]

14761

Occupancy calculator demo

15761

CUDA Occupancy Calculator

1
2
3
4
5
6 Hel
i
8
9
Hel
16 (Don't edit anything below this line)
Hel

25 |Physical Limits for GPU Compute Capability:
26
27

nn

Your chosen resource usage is indicated by the red triangle on the graphs. The other data points

Click Here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

represent the range of possible block sizes, register counts, and shared memory allocation.

Multiprocessor Warp Occupancy

(# warps)

32

N
H

16

0

Impact of Varying Block Size
My Block Size, 256

0

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Threads Per Block

16 /61

Branching and divergent execution path

32 threads =1 warp

SIMT: Single Instruction, Multiple Thread

17761

Up to Pascal

Single program counter shared amongst all 32 threads

18/ 61

What happens with branches?

19761

if (threadidx.x < 4) {
Aj
B;
} else {
X3
Y;

N

Q
on
Q
>
C
O
O
Q
.

20/ 61

Active mask

Specifies which threads of the warp are active at any given time

21761

Execution becomes serialized

22 /61

__global__ void branch_thread(float* out){
int tid = threadIdx.x;
if (tid%2 == 0) {

} else {

23/ 61

__global__ void branch_warp(float* out){
int wid = threadIdx.x/32;
if (wid%2 == 0) {

} else {

24/ 61

Volta!

Mitigates this problem a bit

But fundamentally performance hit is still significant

25/ 61

Pre-Volta

crier o [N AR RRNNRRREERR RN

and Stack (S)

32 thread warp

LQLOOLOOLOOLOOLOOLOOLOOLOOLOLOLOOLODOLOOLOVLVLVOLOOLODOLVDOLOOLVOOLODOOVLVOLOOLOLOOV

Convergence [Y Wy WY = WY WA n Wy n WY WY Y n WY Y n Y o Y Y n O o Y n N n WY n Y Y W Wy Y m Y Y Oy WY MY W Wy Y 0 8

B 05000500055593555955555599356

32 thread warp with independent scheduling

26/ 61

1f (threadIdx.x < 4)
A;
B;
} else {
X3
Y;

N

271761

Gives more flexibility in programming and performance.

Avoids certain deadlock bugs due to divergence.

28 /61

Volta allows the correct execution of many concurrent algorithms.

Definition: starvation-free algorithm

Algorithms that are guaranteed to execute correctly so long as the system ensures that all threads have adequate
access to a contended resource.

29/ 61

__device__ void insert_after(Node xa, Node *b)

{
Node *c;
lock(a); lock(a->next);
C = a—->next;
a->next = b;
b->prev = a;
b->next = c;
c->prev = b;
unlock(c); unlock(a);
}

30/ 61

Volta ensures that the thread holding the lock is able to make progress.

31 /61

Homework 4

oT _ 0°T 0°T
ot Ox? Oy?
Finite-difference

T = AT"

32 /61

At order stencil

2nd order stencil

8th order stencil

33/61

Ath order stencil

Updated in a separate routine;
boundary conditions are used

Node is
updated
using the
stencil.

34/ 61

Goal of the homework

Implement a CUDA routine to update nodes inside the domain using a finite-difference centered stencil

35/61

N
y Mesh nodes
=
X
] s] | —>

Layout in memory

36/ 61

Maximum GFlops Measurements, Titan

1e+04 , ,
1e403 L e e ,,,,,,,, — N
n ! 5
Q ‘ |
Le)
T s
o I
[a
= , Compute bound
16402 L N b i
Memory bound
NVIDIA theoretical gflops - m-
K20x GPU fes01 c-codle gflops —x—

16+00 Te+01 16+02 16+03
Arithmetic intensity (flops/bytes)

37 /61

Roofline Design — Matrix kernels

- Dense matrix multiply €4
- Sparse matrix multiply @

GPU ALU throughput

‘g 1000 — CPU ALU throughput
5 ¢
Q
-
S
o 10 —
-
l_

1] [I =

0.01 0.1 1 10 100 1000

Operational Intensity (flops/byte)

38/61

Where is my Memory?

Intel® 8 core Sandy Bridge CPU NVIDIA® GK110 GPU

4kB registers: 5 TB/s

500 GB/s

39/61

Where are we in the roofline plot?

40/ 61

Order 2 stencil

How many flops?

How many words?

41 /61

case 2:
return curr[0] + xcfl * (curr[-1] + curr[1l] - 2.f * curr[0]) +
ycfl * (curr[width] + curr[-width] - 2.f * curr[0]);

42 / 61

How many flops?
10 additions / multiplications
How many words?

e Read: 5
e Write: 1
e Total: 6

43/ 61

Two main ideas

1. Use cache or shared memory
2. Memory accesses should be coalesced

44 / 61

ldea 1

SEOEDRETDDEEREN
I T ET T RREEORRORL
AR DR EE N
=IIIIIIIIIIIII
&
_
=

- F F R LR RREREY
EEEEREEEEEEE R
JJ I 1 1 J 1 1 1 1 |
DEDENDEIDEEREERE

2 111111
B EECEEN
B LCLLLL .
B LLLLL .

Thread-block = 16 threads.

Reads: 16*3+2. Writes: 16. Total = 66
Flops: 10*16 = 160

Ratio: flops/word = 2.4

46/ 61

|dea 2

EDEEEDE
R
NN |
NN |
_EE R
T
_HEE
_EEE
BEEEERON
N |
R
NN |
NN |
BEE 111§
BEE 111 '
BEE 111 '
BEE 111 'S
EEEEENEN

Improvement

Ratio: flops/word

2.4 — 3.3

48 /61

Peak

For an n X n block:

e Memory traffic: 2n? + 4n
e Flops: 10n°

Maximum intensity: 5 flops/words

49/ 61

Only mesh nodes along x are contiguous.
This size must be a multiple of 32.

A warp must work on a chunk aligned along x.

51761

Warp memory access

52/61

Thread block should be rectangular
Along x: dimension 64
Along y: determines number of threads in block

Example: 512 = dimensiony =8

53/61

Check your bounds

54/ 61

Shared memory algorithm

55/61

Step 1: all threads load data in shared memory

Load in shared memory

56 /61

Step 2: threads inside the domain apply the stencil and write to the output array

Update inside nodes

571761

Sample output

$./main -gsb

Order: 8, 4096x4096, 100 iterations

time (ms)

CPU 2681.71
Global 48.7767
Block 37.4602
Shared 33.9051
L2Ref

Global 0.447065
Block 0.447065
Shared 0.447065

GBytes/sec
45.0444
2476.51
3224.65
3562.77

LInf
3.57628e-07
3.57628e-07
3.57628e-07

L2Err
4.,38207e-08
4,38207e-08
4,38207e-08

58/ 61

If you compile with the -G option:

$./main -gsb
Order: 8, 4096x4096, 100 iterations

time (ms) GBytes/sec
CPU 2683.12 45.0206
Global 208.855 578.373
Block 111.014 1088.12
Shared 136.626 884.138
L2Ref LInf L2Err
Global 0.447065 0] 0]
Block 0.447065 0] 0]
Shared 0.447065 0] 0]

59/ 61

Order 2

$./main -gsb

Order: 2, 4096x4096, 100 iterations

time (ms)

CPU 908.71
Global 37.6773
Block 35.3023
Shared 36.0975
L2Ref

Global 0.418194
Block 0.418194
Shared 0.418194

GBytes/sec
44,3104
1068.69
1140.59
1115.46

LInf
2.98023e-07
2.98023e-07
2.98023e-07

L2Err
4.87715e-08
4.87715e-08
4.87715e-08

60/ 61

What is the best blocking strategy?

Go as wide as you can along x while satisfying memory and concurrency constraints

Then loop along y reusing loaded data

61/61

