
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Software is like entropy: It is di�cult to grasp, weighs nothing, and obeys the Second Law of Thermodynamics; i.e.,
it always increases.” (Norman Augustine)

1 / 61

Concurrency and latency

2 / 61

Imagine you are a pencil manufacturer.

You outsource your manufacturing plants to China but your market is in the US.

How do you organize the logistics of the transport?

3 / 61

Concurrency is used to hide long latencies:

memory access
�oating point units
any long sequence of operations

4 / 61

Processors are optimized in the same way

Hide latency through concurrency

5 / 61

How to maximize concurrency?

Have as many live threads as possible
Instruction-level parallelism

6 / 61

Hardware limits

Max dim. of grid: y/z 65,535 (x is large,)
Max dim. of block: x/y 1,024; z 64
Max # of threads per block: 1,024
Max blocks per SM: 16
Max resident warps: 32
Max threads per SM: 1,024
of 4-byte registers per SM: 64 K
Max shared mem per SM: 64 KB

Spreadsheet

7 / 61

https://ericdarve.github.io/cme213-spring-2021/Code/quadro.txt

How can we make sense of this?

8 / 61

CUDA API

Achieve best potential occupancy; recommended parameter selections

cudaOccupancyMaxActiveBlocksPerMultiprocessor

Reports an occupancy prediction based on the block size and shared memory usage of a kernel

9 / 61

cudaOccupancyMaxPotentialBlockSize
cudaOccupancyMaxPotentialBlockSizeVariableSMem

Returns the minimum grid size and recommended block size to achieve maximum occupancy

10 / 61

Occupancy spreadsheet!

CUDA Occupancy Calculator

11 / 61

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

12 / 61

Command line

$ nvcc --ptxas-options=-v -o transpose transpose.cu

--ptxas-options=-v

13 / 61

Output

ptxas info : Compiling entry function '...fastTranspose...' for 'sm_75'
ptxas info : Function properties for ...fastTranspose...
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 30 registers, 4224 bytes smem, 384 bytes cmem[0]

14 / 61

Occupancy calculator demo

15 / 61

16 / 61

Branching and divergent execution path

32 threads = 1 warp

SIMT: Single Instruction, Multiple Thread

17 / 61

Up to Pascal

Single program counter shared amongst all 32 threads

18 / 61

What happens with branches?

19 / 61

20 / 61

Active mask

Speci�es which threads of the warp are active at any given time

21 / 61

Execution becomes serialized

22 / 61

__global__ void branch_thread(float* out){
 int tid = threadIdx.x;
 if (tid%2 == 0) {
 ...;
 } else {
 ...;
 }
}

23 / 61

__global__ void branch_warp(float* out){
 int wid = threadIdx.x/32;
 if (wid%2 == 0) {
 ...;
 } else {
 ...;
 }
}

24 / 61

Volta!

Mitigates this problem a bit

But fundamentally performance hit is still signi�cant

25 / 61

26 / 61

27 / 61

Gives more �exibility in programming and performance.

Avoids certain deadlock bugs due to divergence.

28 / 61

Volta allows the correct execution of many concurrent algorithms.

De�nition: starvation-free algorithm

Algorithms that are guaranteed to execute correctly so long as the system ensures that all threads have adequate
access to a contended resource.

29 / 61

__device__ void insert_after(Node *a, Node *b)
{
 Node *c;
 lock(a); lock(a->next);
 c = a->next;

 a->next = b;
 b->prev = a;

 b->next = c;
 c->prev = b;

 unlock(c); unlock(a);
}

30 / 61

Volta ensures that the thread holding the lock is able to make progress.

31 / 61

Homework 4

Finite-di�erence

32 / 61

33 / 61

34 / 61

Goal of the homework

Implement a CUDA routine to update nodes inside the domain using a �nite-di�erence centered stencil

35 / 61

36 / 61

37 / 61

38 / 61

39 / 61

Where are we in the roo�ine plot?

40 / 61

Order 2 stencil

How many �ops?

How many words?

41 / 61

case 2:
 return curr[0] + xcfl * (curr[-1] + curr[1] - 2.f * curr[0]) +
 ycfl * (curr[width] + curr[-width] - 2.f * curr[0]);

42 / 61

How many �ops?

10 additions / multiplications

How many words?

Read: 5
Write: 1
Total: 6

43 / 61

Two main ideas

1. Use cache or shared memory
2. Memory accesses should be coalesced

44 / 61

Idea 1

45 / 61

Thread-block = 16 threads.
Reads: 16*3+2. Writes: 16. Total = 66
Flops: 10*16 = 160
Ratio: �ops/word = 2.4

46 / 61

Idea 2

47 / 61

Improvement

Ratio: �ops/word

2.4 → 3.3

48 / 61

Peak

For an block:

Memory tra�c:
Flops:

Maximum intensity: �ops/words

49 / 61

50 / 61

Only mesh nodes along are contiguous.

This size must be a multiple of 32.

A warp must work on a chunk aligned along .

51 / 61

Warp memory access

52 / 61

Thread block should be rectangular

Along x: dimension 64

Along y: determines number of threads in block

Example: 512 → dimension y = 8

53 / 61

Check your bounds

54 / 61

Shared memory algorithm

55 / 61

Step 1: all threads load data in shared memory

56 / 61

Step 2: threads inside the domain apply the stencil and write to the output array

57 / 61

Sample output

$./main -gsb
Order: 8, 4096x4096, 100 iterations
 time (ms) GBytes/sec
 CPU 2681.71 45.0444
 Global 48.7767 2476.51
 Block 37.4602 3224.65
 Shared 33.9051 3562.77

 L2Ref LInf L2Err
 Global 0.447065 3.57628e-07 4.38207e-08
 Block 0.447065 3.57628e-07 4.38207e-08
 Shared 0.447065 3.57628e-07 4.38207e-08

58 / 61

If you compile with the -G option:

$./main -gsb
Order: 8, 4096x4096, 100 iterations
 time (ms) GBytes/sec
 CPU 2683.12 45.0206
 Global 208.855 578.373
 Block 111.014 1088.12
 Shared 136.626 884.138

 L2Ref LInf L2Err
 Global 0.447065 0 0
 Block 0.447065 0 0
 Shared 0.447065 0 0

59 / 61

Order 2

$./main -gsb
Order: 2, 4096x4096, 100 iterations
 time (ms) GBytes/sec
 CPU 908.71 44.3104
 Global 37.6773 1068.69
 Block 35.3023 1140.59
 Shared 36.0975 1115.46

 L2Ref LInf L2Err
 Global 0.418194 2.98023e-07 4.87715e-08
 Block 0.418194 2.98023e-07 4.87715e-08
 Shared 0.418194 2.98023e-07 4.87715e-08

60 / 61

What is the best blocking strategy?

Go as wide as you can along x while satisfying memory and concurrency constraints

Then loop along y reusing loaded data

61 / 61

