CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

€ Stanford University

“Software is like entropy: It is difficult to grasp, weighs nothing, and obeys the Second Law of Thermodynamics; i.e.,
it always increases.” (Norman Augustine)
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Concurrency and latency
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Imagine you are a pencil manufacturer.
You outsource your manufacturing plants to China but your market is in the US.

How do you organize the logistics of the transport?

Russia
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India Myanmar,

Vietnam Philippines b cangu

........
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Concurrency is used to hide long latencies:

* memory access
e floating point units
e any long sequence of operations
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Processors are optimized in the same way

Hide latency through concurrency

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

L

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

time

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96
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How to maximize concurrency?

e Have as many live threads as possible
e Instruction-level parallelism
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Hardware limits

e Max dim. of grid: y/z 65,535 (x is large, 231 — 1)
e Max dim. of block: x/y 1,024; z 64

e Max # of threads per block: 1,024

e Max blocks per SM: 16

e Max resident warps: 32

e Max threads per SM: 1,024

e # of 4-byte registers per SM: 64 K

e Max shared mem per SM: 64 KB

Spreadsheet
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https://ericdarve.github.io/cme213-spring-2021/Code/quadro.txt

How can we make sense of this?
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CUDA API

Achieve best potential occupancy; recommended parameter selections

cudaOccupancyMaxActiveBlocksPerMultiprocessor

Reports an occupancy prediction based on the block size and shared memory usage of a kernel
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cudaOccupancyMaxPotentialBlockSize
cudaOccupancyMaxPotentialBlockSizeVariableSMem

Returns the minimum grid size and recommended block size to achieve maximum occupancy
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Occupancy spreadsheet!

CUDA Occupancy Calculator
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https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls
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CUDA Occu pancy Calculator Click Here for detailed instructions on how to use this occupancy calculator.
For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda
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Command line

$ nvcc --ptxas-options=-v -o transpose transpose.cu

—-—ptxas-options=-v
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Output

ptxas info : Compiling entry function '...fastTranspose...' for 'sm_75'
ptxas info : Function properties for ...fastTranspose...

O bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 30 registers, 4224 bytes smem, 384 bytes cmem[0]
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Occupancy calculator demo
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CUDA Occupancy Calculator
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Your chosen resource usage is indicated by the red triangle on the graphs. The other data points

Click Here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda
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Branching and divergent execution path

32 threads =1 warp

SIMT: Single Instruction, Multiple Thread
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Up to Pascal

Single program counter shared amongst all 32 threads
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What happens with branches?
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if (threadidx.x < 4) {
Aj
B;
} else {
X3
Y;

N

Q
on
Q
>
C
O
O
Q
.
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Active mask

Specifies which threads of the warp are active at any given time
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Execution becomes serialized
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__global__ void branch_thread(float* out){
int tid = threadIdx.x;
if (tid%2 == 0) {

} else {
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__global__ void branch_warp(float* out){
int wid = threadIdx.x/32;
if (wid%2 == 0) {

} else {
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Volta!

Mitigates this problem a bit

But fundamentally performance hit is still significant

25/ 61



Pre-Volta
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and Stack (S)

32 thread warp
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32 thread warp with independent scheduling
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1f (threadIdx.x < 4)
A;
B;
} else {
X3
Y;

N
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Gives more flexibility in programming and performance.

Avoids certain deadlock bugs due to divergence.
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Volta allows the correct execution of many concurrent algorithms.

Definition: starvation-free algorithm

Algorithms that are guaranteed to execute correctly so long as the system ensures that all threads have adequate
access to a contended resource.
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__device__ void insert_after(Node xa, Node *b)

{
Node *c;
lock(a); lock(a->next);
C = a—->next;
a->next = b;
b->prev = a;
b->next = c;
c->prev = b;
unlock(c); unlock(a);
}
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Volta ensures that the thread holding the lock is able to make progress.
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Homework 4

oT _ 0°T  0°T
ot  Ox? Oy?
Finite-difference

T = AT"
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At order stencil

2nd order stencil

8th order stencil
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Ath order stencil

Updated in a separate routine;
boundary conditions are used

Node is
updated
using the
stencil.
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Goal of the homework

Implement a CUDA routine to update nodes inside the domain using a finite-difference centered stencil
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Layout in memory
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Roofline Design — Matrix kernels

- Dense matrix multiply €4
- Sparse matrix multiply @

GPU ALU throughput
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Where is my Memory?

Intel® 8 core Sandy Bridge CPU NVIDIA® GK110 GPU

4kB registers: 5 TB/s

500 GB/s
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Where are we in the roofline plot?
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Order 2 stencil

How many flops?

How many words?
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case 2:
return curr[0] + xcfl * (curr[-1] + curr[1l] - 2.f * curr[0]) +
ycfl * (curr[width] + curr[-width] - 2.f * curr[0]);
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How many flops?
10 additions / multiplications
How many words?

e Read: 5
e Write: 1
e Total: 6
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Two main ideas

1. Use cache or shared memory
2. Memory accesses should be coalesced
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Thread-block = 16 threads.

Reads: 16*3+2. Writes: 16. Total = 66
Flops: 10*16 = 160

Ratio: flops/word = 2.4
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Improvement

Ratio: flops/word

2.4 — 3.3
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Peak

For an n X n block:

e Memory traffic: 2n? + 4n
e Flops: 10n°

Maximum intensity: 5 flops/words
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Only mesh nodes along x are contiguous.
This size must be a multiple of 32.

A warp must work on a chunk aligned along x.

51761



Warp memory access
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Thread block should be rectangular
Along x: dimension 64
Along y: determines number of threads in block

Example: 512 = dimensiony =8
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Check your bounds
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Shared memory algorithm
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Step 1: all threads load data in shared memory

Load in shared memory
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Step 2: threads inside the domain apply the stencil and write to the output array

Update inside nodes
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Sample output

$ ./main -gsb

Order: 8, 4096x4096, 100 iterations

time (ms)

CPU 2681.71
Global 48.7767
Block 37.4602
Shared 33.9051
L2Ref

Global 0.447065
Block 0.447065
Shared 0.447065

GBytes/sec
45.0444
2476.51
3224.65
3562.77

LInf
3.57628e-07
3.57628e-07
3.57628e-07

L2Err
4.,38207e-08
4,38207e-08
4,38207e-08
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If you compile with the -G option:

$ ./main -gsb
Order: 8, 4096x4096, 100 iterations

time (ms) GBytes/sec
CPU 2683.12 45.0206
Global 208.855 578.373
Block 111.014 1088.12
Shared 136.626 884.138
L2Ref LInf L2Err
Global 0.447065 0] 0]
Block 0.447065 0] 0]
Shared 0.447065 0] 0]
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Order 2

$ ./main -gsb

Order: 2, 4096x4096, 100 iterations

time (ms)

CPU 908.71
Global 37.6773
Block 35.3023
Shared 36.0975
L2Ref

Global 0.418194
Block 0.418194
Shared 0.418194

GBytes/sec
44,3104
1068.69
1140.59
1115.46

LInf
2.98023e-07
2.98023e-07
2.98023e-07

L2Err
4.87715e-08
4.87715e-08
4.87715e-08
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What is the best blocking strategy?

Go as wide as you can along x while satisfying memory and concurrency constraints

Then loop along y reusing loaded data
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