
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Physics is the universe's operating system.” (Steven R Garman)
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Final project
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Goal

Implementing a neural network in order to recognize hand-written digits
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Logistics

Turn in Date Grade
Preliminary report + code Friday May 28th 20%

Final report (4 pages) + code Sunday June 6th 80%
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Preliminary report

Focus is on correctness
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Final report

Pro�ling and analysis, performance, quality of report

What are the performance bottlenecks in your code?

How can they be addressed?
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Correctness

Discuss your strategy to test your code

Test outputs for valid inputs

Make sure you distinguish roundo� errors from genuine bugs
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Input layer: image

Hidden layer: -n num; variable size

Output layer: softmax vector with 10 digits
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Softmax

Interpreted as a probability
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Each layer is a matrix multiplication and a non-linear function
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We will use sigmoid

14 / 61



How do you train a network?

Many methods but most are based on gradient descent

15 / 61



Error function

: weights and biases of network = all parameters
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Gradient update

Gradient is computed by repeated application of the chain rule

Backpropagation
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Stochastic gradient descent
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If we use a small subset, this allows more updates to the DNN coe�cients

⇒ more accurate
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Randomness of subset selection allows avoiding local minima and escaping saddle points

⇒ better convergence
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Sequence of operations

Forward pass = left to right; DNN prediction; compare with label

Backward propagation = right to left; chain rule; compute gradient and update DNN

Iterate until convergence
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Core building blocks to implement

Matrix-matrix products
Non-linear activation functions
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https://playground.tensor�ow.org
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https://playground.tensorflow.org/
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Regularization

: weights and biases of the network
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Regularization makes the DNN more linear
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How can we �gure out how much regularization is needed?
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Training set: used to minimize loss; involved in de�ning the gradient

Validation set: used to evaluate model; how accurate is it? Avoids over�tting

33 / 61



Example: small 2-layer DNN with width 8
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With noise added to data
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Fix 1: reduce the size of the DNN; for example with width 1
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Fix 2: add regularization, e.g., 
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Training Validation Diagnostic

Over�tting; ↑ 

Too much regularization;
↓ 

Regularization is good
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Training set: optimize DNN parameters
Validation set: optimize regularization
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Two main tasks in the project

1. Implement a matrix-matrix product (GEMM) algorithm
2. Implement the MPI algorithm for distributed memory
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Naive implementation; shared memory is not used
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GEMM performance

The key is to increase the arithmetic intensity.

This requires reducing the memory tra�c.
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Block size: 

Memory tra�c: 

Flops: 

High arithmetic intensity 
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MPI, distributed memory algorithm

Topic of upcoming lectures

High-level discussion of approaches
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Data parallelism
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Communication

Sum is required over all input images to compute gradient
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Parallel reduction to get 

= Reduction for all DNN coe�cients across all nodes
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Time for MPI communication is fairly signi�cant.

A better implementation exists!
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Model parallelism

Much more complicated to understand but implementation is not more di�cult than previous approach
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Reduction is required at the end to get the output labels 
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Backpropagation

You have not seen the details yet. So, it will be hard to follow.

The take-home message is that no MPI communication is required between nodes.
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Warning!

Equations in previous slide were simpli�ed for clarity

See Part1 write-up for details
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No communication is required during the backpropagation

This implementation is much more e�cient
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