CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

"Physics is the universe's operating system." (Steven R Garman)

Final project

Goal

Implementing a neural network in order to recognize hand-written digits

Logistics

Preliminary report

Focus is on correctness

Final report

Profiling and analysis, performance, quality of report

What are the performance bottlenecks in your code?

How can they be addressed?

Correctness

Discuss your strategy to test your code

Test outputs for valid inputs

Make sure you distinguish roundoff errors from genuine bugs

Input layer: image

Hidden layer: - n num; variable size

Output layer: softmax vector with 10 digits

Softmax

$$
\mathrm{softmax}(z)_j = \frac{\mathrm{exp}(z_j)}{\sum_{i=0}^9 \mathrm{exp}(z_i)}
$$

Interpreted as a probability

Each layer is a matrix multiplication and a non-linear function

$$
z=Wx+b\\[3pt]a=\sigma(z)
$$

We will use sigmoid

How do you train a network?

Many methods but most are based on gradient descent

Error function

$$
J(p) = \frac{1}{N} \sum_{i=1}^N \mathrm{error}^{(i)}(y_i, \hat{y}_i)
$$

 p : weights and biases of network = all parameters

Gradient update

 $p \leftarrow p - \alpha \nabla_p J$

Gradient is computed by repeated application of the chain rule

Backpropagation

Stochastic gradient descent

$$
J_r(p) = \frac{1}{N} \sum_{i \in \text{random subset}} \text{error}^{(i)}(y_i, \hat{y}_i)
$$

$$
p \leftarrow p - \alpha \nabla_p J_r
$$

If we use a small subset, this allows more updates to the DNN coefficients

⇒ more accurate

Randomness of subset selection allows avoiding local minima and escaping saddle points

⇒ better convergence

Sequence of operations

Forward pass = left to right; DNN prediction; compare with label

Backward propagation = right to left; chain rule; compute gradient and update DNN

Iterate until convergence

Core building blocks to implement

- Matrix-matrix products
- Non-linear activation functions

https://playground.tensorflow.org

Regularization

$$
J(p) = \frac{1}{N} \sum_{i=1}^N \mathrm{error}^{(i)}(y_i, \hat{y}_i) + \frac{1}{2} \, \lambda \, ||p||_2^2
$$

 p : weights and biases of the network

$$
z=Wx+b\\[3pt]a=\sigma(z)
$$

Regularization makes the DNN more linear

How can we figure out how much regularization is needed?

Training set: used to minimize loss; involved in defining the gradient Validation set: used to evaluate model; how accurate is it? Avoids overfitting

Example: small 2-layer DNN with width 8

With noise added to data

Fix 1: reduce the size of the DNN; for example with width 1

Fix 2: add regularization, e.g., $\lambda=10^{-3}$

Diagnostic

Overfitting; 1

Too much regularization; $\downarrow \lambda$

Regularization is good

- Training set: optimize DNN parameters
- Validation set: optimize regularization

Two main tasks in the project

1. Implement a matrix-matrix product (GEMM) algorithm 2. Implement the MPI algorithm for distributed memory

Naive implementation; shared memory is not used

GEMM performance

The key is to increase the arithmetic intensity.

This requires reducing the memory traffic.

$$
c_{ij} = \sum_k a_{ik} b_{kj}
$$

$$
c_{ij} \leftarrow c_{ij} + a_{ik} b_{kj}
$$

$c_{ij} \leftarrow c_{ij} + a_{ik} b_{kj}$

Block size: b

Memory traffic: $2b$

Flops: b^2

High arithmetic intensity

MPI, distributed memory algorithm

Topic of upcoming lectures

High-level discussion of approaches

Communication

$$
J(p) = \frac{1}{N} \sum_{i=1}^N \mathrm{error}^{(i)}(y_i, \hat{y}_i)
$$

Sum is required over all input images to compute gradient

Parallel reduction to get $\nabla_p J$

= Reduction for all DNN coefficients across all nodes

Time for MPI communication is fairly significant.

A better implementation exists!

Model parallelism

Much more complicated to understand but implementation is not more difficult than previous approach

Reduction is required at the end to get the output labels \boldsymbol{y}

Backpropagation

You have not seen the details yet. So, it will be hard to follow.

The take-home message is that no MPI communication is required between nodes.

 $[W^{(2)}]^{T} y \t W^{(1)} \leftarrow W^{(1)} - \alpha [(W^{(2)})^{T} y] x^{T}$

Warning!

Equations in previous slide were simplified for clarity

See Part1 write-up for details

No communication is required during the backpropagation

This implementation is much more efficient

