CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

Stanford University

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.” (Stephen Hawking)

1733



Group activity with prefix scan

2/33



Parallel reduction or scan

ONONONONONONONE

O 9 & O
& 14



Cumulative sum or prefix scan

3 8 14 16 20

4/ 33



Algorithm 1

Work efficient

5/33



Two phases

1. Collect or reduce
2. Distribute

6/33



D
D)
D)

LINN N
A
il

:

i
>\
T
A ‘\3 +
)|

AN MM
Tl
il




Number of passes: 2 log, n — 2

Amount of work: ~ 2 x sequential flops

8/33



Can we reduce the running time by adding more flops?

9/33



Algorithm 2: Hillis-Steele

Main idea: concurrent tree reductions

10/ 33






Number of passes: log, n vs 2 log, 1

Amount of work: ~ log, n x sequential flops

12 /33



When a lot of processors are available, Hillis-Steele algorithm is superior.

Shorter span vs work-efficient

13733



Game time

14/ 33



Form teams of 10-14 players

Goal of activity: parallel prefix scan using human processors

15733



Download the code from class web page:

generate sequence.cpp

Compile and run

$ g+t+ —-std=c++11 generate_sequence.cpp; ./a.out

16 /33


https://ericdarve.github.io/cme213-spring-2021/Code/generate_sequence.cpp

Each group of players is assigned a unique group ID

$ g++ -std=c++11 generate_sequence.cpp; ./a.out

Enter your group number

17733



Enter your group number (an integer greater or equal to 1)
1

Selected group ID: 1

Row 1: index

Row 2: random value

Index 1 to 10

1 2 3 4 5 6 7 8 9 10
92042 30656 29306 78086 18200 58661 37315 62538 18682 55136
Index 11 to 20

11 12 13 14 15 16 17 18 19 20
58612 97333 91698 92309 76746 59943 89398 82595 12042 20990

Index 21 to 30

21 22 23 24 25 26 27 28 29 30
76933 24332 48451 73520 86703 44385 45908 76778 92724 71110
Index 31 to 40

31 32 33 34 35 36 37 38 39 40
31160 69749 83981 42199 15489 60934 71592 97890 98748 71890

Index 41 to 50

41 42 43 44 45 46 47 48 49 50
14235 47311 47343 45712 61789 60090 86268 92795 16769 54642
Index 51 to 60

51 52 53 54 55 56 57 58 59 60
10333 12637 27953 47918 93868 81824 91842 56957 55775 84172

The code returns a sequence of random numbers.

This is the sequence you use for the cumulative sum.

18 /33



We are going to build a computer using humans.
There are 3 types of players in this game: mem, net, pu.
Each player has only one type.

You can have as many players of each type as you want.

19/33



In previous years, we were doing this exercise on the lawn on the Stanford oval.

This year we will use zoom and emails instead and try to replicate a similar experience.

20/ 33



All players in the same team will be in the same breakout room on zoom.

You can communicate in the breakout room.

However, to compute the prefix sum you need to communicate exclusively through emails following the rules
below.

This process mimics the time taken to execute instructions on a computer.

21/33



In the example below, we will assume that we want to add

12 + 23 = 35

Being able to add two integers is all we need to compute the prefix sum in parallel.

22 /33



The thinkers

mem player: they can send emails to the net players.

The content of the email should follow the pattern:

Add the numbers 12 and 23

23/ 33



The runners (they used to run on the lawn from mem to pu)

net players follow these steps:

(1) Compile the commands from the user. The assembly code is:

LD R1, [12];
LD R2, [23];
IADD R3, R1, R2;

(2) Use this online tool to convert the string above to a binary code.

A BASX
AEARX

24/ 33


https://www.rapidtables.com/convert/number/ascii-to-binary.html

Output

01001100 01000100 00100000 01010010 00110001 001011600 001600000 601011011 001160001 0601100160 01011101 06111011 000

25/ 33



(3) Send the binary code to the pu player by email.

You cannot send another message to that pu before you receive a reply back.

26/ 33



The machines

pu player:

1. Decode the binary message using the decoder.
2. Compute the result.
3. Email the result, 35, to the net player.

27 /33


https://www.rapidtables.com/convert/number/binary-to-ascii.html

The net player now performs the following tasks:

(1) Generate the assembly for the result
ST [35], R3;
(2) Encode the message:

01010011 01010100 00100000 01011011 00110010 00110011 01011101 00101100 00100000 010100160 00116011 06111011

(3) Email the binary code to the mem player

28 /33


https://www.rapidtables.com/convert/number/ascii-to-binary.html

The mem player decodes the message.

29/ 33



mem
emails

addition
to net

pu pu emails
performs result to
operation net

net net .
net emails pu

pu decodes

generates encodes
AS code to binary

Encoder;

https://www.rapidtables.com/convert/number/ascii-to-binary.html

Decoder:

https://www.rapidtables.com/convert/number/binary-to-ascii.html

Make sure you have everyone's email!

het
generates
AS code

net
encodes
to binary

net emails
mem

mem
decodes

30/33


https://www.rapidtables.com/convert/number/ascii-to-binary.html
https://www.rapidtables.com/convert/number/binary-to-ascii.html

Pick a team name

31/33






Discussion

How did you organize your group?
What was the best strategy?
What were the main bottlenecks?

What would you do differently?

33/33



