
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Where is the ‘any’ key?” — Homer Simpson, in response to the message, “Press any key”

1 / 60

Distributed memory computing using MPI

2 / 60

Shared memory is a good model
for a small number of processes.

3 / 60

When dealing with a large number of processors,
we need to view the memory as being distributed.

4 / 60

What this means:

Processors can no longer directly read and write
to another processor's memory

5 / 60

Instead processors exchange messages.

Programmed by the user explicitly.

Send + Receive

6 / 60

This can be done using MPI.

MPI is the standard for distributed memory computing.

Message Passing Interface

7 / 60

Flynn’s taxonomy

SIMT: one instruction is dispatched to multiple threads.

Warp on a GPU

8 / 60

SIMD: same instruction run by di�erent processing units using di�erent data

Vector processing units

Instruction Pool

D
at

a
Po

ol

PU

PU

PU

PU

SIMD

Ve
ct

or
 U

ni
t

9 / 60

MIMD: multiple instructions, multiple data; multiple threads running di�erent functions

Multicore threads

D
at

a
Po

ol

Instruction Pool

PU

PU

PU

PU

PU

PU

PU

PU

MIMD

10 / 60

SPMD: this is our topic for today.

The same program runs on di�erent processors.

Processors communicate through a network by exchanging messages or data in an explicit manner.

Each program has a unique ID or rank which is used to determine what computations the program should
perform.

11 / 60

12 / 60

13 / 60

Where can I get MPI?

OpenMPI: www.open-mpi.org
(what we use on icme-gpu)
MVAPICH: mvapich.cse.ohio-state.edu
MPICH: www.mpich.org

14 / 60

https://www.open-mpi.org/
http://mvapich.cse.ohio-state.edu/
https://www.mpich.org/

What computer can I use it with?

You can test MPI using a multicore computer.

Each process runs on its own core.

You can run this on your laptop or icme-gpu.

15 / 60

Compiling

Compile with:
mpic++

Header:
mpi.h

16 / 60

Running is more complicated than usual.

You need to start multiple programs (processes) on multiple computers.

You need to make sure all processes are killed or terminated at the end.

⇒ sbatch, mpirun

17 / 60

sbatch: batch submission

Your job will be placed in a queue and run when resources are available.

The output is written to a �le.

18 / 60

#!/bin/bash

#SBATCH --time=00:30:00
#SBATCH --partition=CME
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --gres=gpu:4
#SBATCH --job-name=fp
#SBATCH --output=fp-%j.out
#SBATCH --error=fp-%j.err

mpirun ./mpi_hello

19 / 60

Or:

#!/bin/bash

#SBATCH --time=00:30:00
#SBATCH --partition=CME
#SBATCH --nodes=1
#SBATCH --gres=gpu:4
#SBATCH --job-name=fp
#SBATCH --output=fp-%j.out
#SBATCH --error=fp-%j.err

mpirun -n 4 ./mpi_hello

20 / 60

With mpirun, we are running the program mpi_hello four times.

21 / 60

Example:

#!/bin/bash

#SBATCH --partition=CME
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4

mpirun hostname

22 / 60

Output:

icmet01
icmet01
icmet01
icmet01

23 / 60

mpi_hello.cpp

24 / 60

 MPI_Init(&argc, &argv);

 // How many processes are running
 int numprocs;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 // What's my rank?
 int rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 // Which node am I running on?
 int len;
 char hostname[MPI_MAX_PROCESSOR_NAME];
 MPI_Get_processor_name(hostname, &len);

 printf("Hello from rank %2d running on node: %s\n", rank, hostname);

 if (rank == MASTER)
 printf("MASTER process: the number of MPI processes is: %2d\n", numprocs);

 MPI_Finalize();

25 / 60

Computing using MPI

26 / 60

$ salloc -N 1 -n 4 --partition=CME mpirun mpi_pi_send
MPI process 0 has started on icmet01 [total number of processors 4]
MPI process 3 has started on icmet01 [total number of processors 4]
MPI process 1 has started on icmet01 [total number of processors 4]
MPI process 2 has started on icmet01 [total number of processors 4]
 After 2000000 throws, average value of pi = 3.14071400
 After 4000000 throws, average value of pi = 3.14121500
 After 6000000 throws, average value of pi = 3.14127600
 After 8000000 throws, average value of pi = 3.14107900
 After 10000000 throws, average value of pi = 3.14110760
 After 12000000 throws, average value of pi = 3.14155867
 After 14000000 throws, average value of pi = 3.14151857
 After 16000000 throws, average value of pi = 3.14160475
 After 18000000 throws, average value of pi = 3.14165844
 After 20000000 throws, average value of pi = 3.14163500

Exact value of pi: 3.1415926535897

27 / 60

mpi_pi_send.cpp

28 / 60

if (rank != MASTER)
{
 int tag = i;
 int rc = MPI_Send(&my_pi, 1, MPI_DOUBLE,
 MASTER, tag, MPI_COMM_WORLD);

 if (rc != MPI_SUCCESS)
 printf("%d: Send failure on round %d\n", rank, tag);
}
else
{
 ...
}

29 / 60

int MPI_Send(void *smessage, int count,
 MPI_Datatype datatype, int dest,
 int tag,
 MPI_Comm comm)

smessage bu�er which contains the data
count number of elements to be sent
datatype data type of entries
dest rank of the target process
tag message tag which (used to distinguish messages)
comm communicator used for the communication

30 / 60

31 / 60

if (rank != MASTER) { ... } else {
 int tag = i; double pisum = 0;

 for (int n = 1; n < numprocs; n++) {
 double pirecv; MPI_Status status;
 int rc = MPI_Recv(&pirecv, 1, MPI_DOUBLE, MPI_ANY_SOURCE,
 tag, MPI_COMM_WORLD, &status);
 if (rc != MPI_SUCCESS)
 printf("%d: Receive failure on round %d\n", rank, tag);
 /* Running total of pi */
 pisum += pirecv;
 }
}

32 / 60

int MPI_Recv(void *rmessage, int count,
 MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm,
 MPI_Status *status)

Mostly same as before. One new argument:

status data structure that contains information about the message that was received

33 / 60

if (rank != MASTER) {
 int tag = i;
 int rc = MPI_Send(&my_pi, 1, MPI_DOUBLE,
 MASTER, tag, MPI_COMM_WORLD);
} else {
 for (int n = 1; n < numprocs; n++) {
 int rc = MPI_Recv(&pirecv, 1, MPI_DOUBLE, MPI_ANY_SOURCE,
 tag, MPI_COMM_WORLD, &status);
 pisum += pirecv;
 }
}

34 / 60

Rules and order

Each Send must be matched with a corresponding Recv.

Order: messages are received in the order in which they have been sent.

35 / 60

If a sender sends two messages of the same type one after another to the same receiver, the MPI runtime system
ensures that the �rst message sent is always received �rst.

36 / 60

Collective communications

37 / 60

What we have discussed so far is point-to-point communication, that is one process communicates with another
process.

38 / 60

Let’s say that we have a group of processes that need to exchange data.

For example we want to do a reduction.

This is called a collective communication, i.e., multiple processes need to communicate.

39 / 60

For best performance, we need to orchestrate the communication.

Simply having each process send its data to the master node is ine�cient.

40 / 60

41 / 60

Computer network = network of highways

Each highway has a number of lanes and a maximum tra�c it can support. This is the bandwidth.

42 / 60

Depending on the network topology, there is an optimal algorithm to route the messages in order to minimize the
total wall clock time of the collective communication.

Three key issues:

1. These communication algorithms can be complicated.
2. They depend on the network topology.
3. There are relatively few collective communication patterns that get reused over and over again.

43 / 60

Let's review the main functions

44 / 60

MPI_Bcast(&buffer,count,datatype,root,comm)

45 / 60

MPI_Reduce(&sendbuf,&recvbuf,count,datatype,op,root,comm)

46 / 60

47 / 60

Using 16 tasks to scan 40000000 numbers...
Done.
Largest prime is 39999983.
Total number of primes found: 2433654
Wall clock time elapsed: 3.19 seconds

48 / 60

mpi_prime.cpp

49 / 60

for (int n = mystart; n <= LIMIT; n += stride) {
 if (IsPrime(n)) {
 pc++; // found a prime
 foundone = n; // last prime that we have found
 }
}
// Total number of primes found by all processes: MPI_SUM
MPI_Reduce(&pc, &pcsum, 1, MPI_INT, MPI_SUM, MASTER, MPI_COMM_WORLD);

// The largest prime that was found by all processes: MPI_MAX
MPI_Reduce(&foundone, &maxprime, 1, MPI_INT, MPI_MAX, MASTER, MPI_COMM_WORLD);

50 / 60

MPI_Gather(&sendbuf,sendcnt,sendtype,&recvbuf,recvcount,recvtype,root,comm)

51 / 60

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,recvcnt,recvtype,root,comm)

52 / 60

Final project

Rank 0 reads MNIST data from disk

MPI_Scatter the images to all processors

53 / 60

MPI_Allgather(&sendbuf,sendcount,sendtype,&recvbuf,recvcount,recvtype,comm)

54 / 60

MPI_Allreduce(&sendbuf,&recvbuf,count,datatype,op,comm)

55 / 60

Final project

Each process has a partial

MPI_Allreduce to get the complete gradient on all processors

56 / 60

Rank 0 has values: 8071 1347 839 2390 5379
Rank 1 has values: 8542 1166 3510 7451 2227
Rank 2 has values: 4341 4158 6383 1559 1566
Rank 3 has values: 2437 1848 4815 1564 2616

Rank 0 has the lowest value of 839

Rank 0 has received the value: 839
Rank 1 has received the value: 839
Rank 2 has received the value: 839
Rank 3 has received the value: 839

57 / 60

proc_min_value.cpp

58 / 60

int localres[2], globalres[2];
localres[0] = localarr[0]; // Minimum
for (int i = 1; i < locn; i++)
 if (localarr[i] < localres[0])
 localres[0] = localarr[i];

// The second entry is the rank of this process.
localres[1] = rank;

// MPI_MINLOC: like the operator min. The difference is that it
// takes as input two numbers; the first one is used to determine the
// minimum value. The second number just goes along for the ride.
// MPI_2INT: type for 2 integers.
MPI_Allreduce(localres, globalres, 1, MPI_2INT, MPI_MINLOC, MPI_COMM_WORLD);

59 / 60

MPI_Alltoall(&sendbuf,sendcount,sendtype,&recvbuf,recvcnt,recvtype,comm)

60 / 60

