
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Make everything as simple as possible, but not simpler.” — Albert Einstein

1 / 63

MPI process mapping

2 / 63

Mapping is important for performance

3 / 63

Lots of interprocess data exchange
→ processes should be close

Lots of memory accesses
→ processes should be far

4 / 63

Example 1: 2-package quad-core Xeon

Pre-Nehalem, with 2 dual-core dies into each package

5 / 63

6 / 63

Example 2: PPC64-based system with 32 cores (each with 2 hardware threads)

The architecture can get complicated real fast!

7 / 63

8 / 63

Mapping relies on two concepts:

1. Mapping: assign process to hardware component
2. Binding: restrict the motion of processes between hardware components

9 / 63

Binding

OS is responsible for assigning a hardware thread to each MPI process.

How do you control the placement of process threads?

-bind-to object

10 / 63

This determines how the OS can migrate a process.

Does the process stay with the same hardware thread or is it allowed to migrate to another thread (say on the
same socket)?

11 / 63

bind-to options

Get all options using $ mpirun -help

12 / 63

Option Hardware element
hwthread bind to hardware thread
core bind to core

l1cache bind to process on L1 cache domain
l2cache bind to process on L2 cache domain
l3cache bind to process on L3 cache domain

13 / 63

Continued

Option Hardware element
socket bind to socket
numa bind to NUMA domain
board bind to motherboard

14 / 63

map-by

map-by object

Skip over object between bindings.

Options:
slot, hwthread, core, L1cache, L2cache, L3cache, socket, numa, board, node

15 / 63

Example usage:

mpirun -bind-to core -map-by core -np 4 ./a.out

16 / 63

Example output on icme-gpu

17 / 63

$ salloc --partition=CME -n 4 mpirun --report-bindings --oversubscribe \
 --bind-to hwthread --map-by hwthread ./mpi_hello
rank 0 bound to socket 0[core 0[hwt 0]]: [B./../../../../../../..]
rank 1 bound to socket 0[core 0[hwt 1]]: [.B/../../../../../../..]
rank 2 bound to socket 0[core 1[hwt 0]]: [../B./../../../../../..]
rank 3 bound to socket 0[core 1[hwt 1]]: [../.B/../../../../../..]

18 / 63

$ salloc --partition=CME -n 12 mpirun --report-bindings --oversubscribe \
 --bind-to hwthread --map-by core ./mpi_hello
rank 0 bound to socket 0[core 0[hwt 0]]: [B./../../../../../../..]
rank 1 bound to socket 0[core 1[hwt 0]]: [../B./../../../../../..]
rank 2 bound to socket 0[core 2[hwt 0]]: [../../B./../../../../..]
rank 3 bound to socket 0[core 3[hwt 0]]: [../../../B./../../../..]
rank 4 bound to socket 0[core 4[hwt 0]]: [../../../../B./../../..]
rank 5 bound to socket 0[core 5[hwt 0]]: [../../../../../B./../..]
rank 6 bound to socket 0[core 6[hwt 0]]: [../../../../../../B./..]
rank 7 bound to socket 0[core 7[hwt 0]]: [../../../../../../../B.]
rank 8 bound to socket 0[core 0[hwt 1]]: [.B/../../../../../../..]
rank 9 bound to socket 0[core 1[hwt 1]]: [../.B/../../../../../..]
rank 10 bound to socket 0[core 2[hwt 1]]: [../../.B/../../../../..]
rank 11 bound to socket 0[core 3[hwt 1]]: [../../../.B/../../../..]

19 / 63

More information

Mapping, Ranking, and Binding

20 / 63

https://www.open-mpi.org/doc/v4.1/man1/mpirun.1.php#sect12

MPI communications

Two strategies:

1. Bu�ered: send/receive appear to complete immediately
2. Non-bu�ered: saves memory but requires waiting

21 / 63

22 / 63

23 / 63

Summary send/recv with buffering

24 / 63

Send

If MPI uses a separate system bu�er, the data in smessage (user bu�er space) is copied (fast); then the main
thread resumes.

If MPI does not use a separate system bu�er, the main thread must wait until the communication over the network
is complete.

25 / 63

Recv

If communication happens before the call, the data is stored in an MPI system bu�er, and then simply copied into
the user provided rmessage when recv() is called.

The user cannot decide whether a bu�er is used or not; the MPI library makes that decision based on the
resources available and other factors.

26 / 63

27 / 63

Send/Recv deadlocks

28 / 63

Very easy to achieve with Send/Recv

Send and Recv are both blocking

Process will wait until communication completes

29 / 63

Process 0 Process 1 Deadlock
Recv()
Send()

Recv()
Send()

Always

Send()
Recv()

Send()
Recv()

Depends on whether a bu�er is used or not

Send()
Recv()

Recv()
Send()

Secure

30 / 63

Let's demonstrate these implementations on a ring communication example

31 / 63

32 / 63

Deadlock

ring_DL.cpp

33 / 63

...
MPI_Recv(&number_recv, 1, MPI_INT, rank_sender,
 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(&number_send, 1, MPI_INT, rank_receiver,
 0, MPI_COMM_WORLD);
...

34 / 63

Uncertain case

ring_NS.cpp

...
MPI_Send(&number_send, 1, MPI_INT, rank_receiver,
 0, MPI_COMM_WORLD);
MPI_Recv(&number_recv, 1, MPI_INT, rank_sender,
 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
...

35 / 63

Correct implementation

ring_SEC.cpp

36 / 63

if (rank % 2 == 0) {
 MPI_Send(&number_send, 1, MPI_INT, rank_receiver,
 0, MPI_COMM_WORLD);
} else {
 MPI_Recv(&number_recv, 1, MPI_INT, rank_sender,
 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

if (rank % 2 == 1){
 MPI_Send(&number_send, 1, MPI_INT, rank_receiver,
 0, MPI_COMM_WORLD);
} else {
 MPI_Recv(&number_recv, 1, MPI_INT, rank_sender,
 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

37 / 63

Other implementation using Sendrecv

ring_SR.cpp

 MPI_Sendrecv(&number_send, 1, MPI_INT, rank_receiver, 0, &number_recv, 1,
 MPI_INT, rank_sender, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

38 / 63

Non-blocking MPI communications

39 / 63

Blocking

What we have seen so far

Process waits until MPI command completes

40 / 63

Advantages

Simple to use.
Issue command; once code returns, you know that the task is done (at least the resource is usable).
E�cient.

However, this is too restrictive.

41 / 63

When communications are happening, you probably want to do something else, such as do some useful
computation or issue other communications.

This is called overlapping communication and computation.

42 / 63

More generally, instead of blocking and wait for some data to perform the next task, you want to work on all the
tasks for which data is available.

Then, check periodically for status of communication.

43 / 63

Non-blocking communications are also safer and help avoid deadlocks.

44 / 63

How to use non-blocking communications

Online documentation

MPI_Isend

MPI_Irecv

MPI_Test and MPI_Wait

45 / 63

https://www.open-mpi.org/doc/v4.1/

Motivating example

46 / 63

Gather ring example

47 / 63

48 / 63

gather_ring.cpp

49 / 63

vector<MPI_Request> send_req(nproc - 1);
for (int i = 0; i < nproc - 1; ++i) {
 // Send to the right: Isend
 int *p_send = &numbers[(rank - i + nproc) % nproc];
 MPI_Isend(p_send, 1, MPI_INT, rank_receiver, 0, MPI_COMM_WORLD,
 &send_req[i]);
 // We can proceed; no need to wait now.
 // Receive from the left: Recv
 int *p_recv = &numbers[(rank - i - 1 + nproc) % nproc];
 MPI_Recv(p_recv, 1, MPI_INT, rank_sender, 0,
 MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 // We need to wait; we cannot move forward until we have that data.
}

50 / 63

The key MPI routines

51 / 63

int MPI_Isend(void* buf, int count,
 MPI_Datatype datatype,
 int dest, int tag,
 MPI_Comm comm, MPI_Request *request)

MPI_Request* used to get information later on about the status of that operation.

52 / 63

int MPI_Irecv(void* buf, int count,
 MPI_Datatype datatype,
 int source, int tag,
 MPI_Comm comm, MPI_Request *request)

53 / 63

int MPI_Test(MPI_Request *request, int *flag,
 MPI_Status *status)

flag True if operation completed (logical)

54 / 63

int MPI_Wait(MPI_Request *request, MPI_Status *status)

Waits (blocks) for an MPI send or receive to complete

55 / 63

MPI send modes

Optimization!

56 / 63

Three main algorithmic variants:

1. Buffered—MPI uses a bu�er to avoid blocking
2. Eager—MPI will try to send data immediately whether or not a Recv has been posted. Works well for small

messages.
3. Rendez-vous—Send data only when Recv has been posted; bu�ering is not needed; requires a

synchronization of the two processes

Online documentation

57 / 63

https://www.open-mpi.org/doc/v4.1/

MPI standard Send

MPI_Send

Message size Strategy
Small messages eager
Large messages rendez-vous

User has no control

58 / 63

Bsend

Send with user-speci�ed bu�ering | MPI_Bsend

int MPI_Bsend(const void *buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

Allows the user to send messages without worrying about whether they are bu�ered.

The user must have provided bu�er space using
MPI_Buffer_attach(void *buf, int size)

59 / 63

Ssend

Synchronous send; rendez-vous | MPI_Ssend

int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm)

Blocks until bu�er in sending task is free for reuse and destination process has started to receive message. Best
performance for data transfer.

Can be used to detect potential deadlocks hidden by MPI bu�ering.

60 / 63

Rsend

Ready send; eager | MPI_Rsend

int MPI_Rsend(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm)

A ready send may only be called if the user can guarantee that a receive is already posted. It is an error if the
receive is not posted before the ready send is called.

Uncommon

61 / 63

Send Modes MPI function Completion Condition
Standard send MPI_Send Message sent (receiver state unknown)
Bu�ered send MPI_Bsend Always completes, irrespective of the receiver

Synchronous send MPI_Ssend Only completes when the receive operation has started
Ready send MPI_Rsend May be used only when the matching receive has already been posted

62 / 63

Useful resources

LLNL tutorial
LLNL MPI performance
MPI standard version v3.1
Open MPI documentation v4.1

63 / 63

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi_performance/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.open-mpi.org/doc/v4.1/

