
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Programs must be written for people to read, and only incidentally for machines to execute.” — Abelson and
Sussman

1 / 77

We will illustrate several concepts in distributed memory computing using a linear algebra example, the matrix-
vector product.

We will cover two topics:

understanding and modeling performance
extending collective communications to groups of processes

2 / 77

Matrix-vector product

3 / 77

4 / 77

Strategy 1: row partitioning

5 / 77

6 / 77

Step 1: replicate across all processes

MPI_Allgather()

7 / 77

Step 2: local product; no communication

matvecrow.cpp

8 / 77

// Gather entire vector b on each processor using Allgather
MPI_Allgather(&bloc[0], nlocal, MPI_FLOAT, &b[0], nlocal, MPI_FLOAT,
 MPI_COMM_WORLD);
// sending nlocal and receiving nlocal from any other process

// Perform the matrix-vector multiplication involving the
// locally stored submatrix.
for(int i=0; i<nlocal; i++) {
 for(int j=0; j<n; j++) {
 x[i] += a[i*n+j] * b[j];
 }
}

9 / 77

Strategy 2: column partitioning

10 / 77

11 / 77

Step 1: calculate partial products with each process

12 / 77

13 / 77

Step 2: reduce all partial results

MPI_Reduce()

Step 3: send sub-blocks to all processes

MPI_Scatter()

14 / 77

Performance is very similar to row partitioning.

15 / 77

If we have many processors, previous approaches lose e�ciency.

16 / 77

Better approach: 2D block partitioning

17 / 77

18 / 77

19 / 77

Step 1: P2P communication

Step 2: broadcast in each column

Step 3: local matrix-vector product

20 / 77

21 / 77

Step 4: reduction across columns

22 / 77

In this approach, we have avoided communications between all processes.

Only subsets communicate.

23 / 77

In addition, we can assign a process per block.

More processes can be used compared to row/column partitioning.

24 / 77

How can we quantify this improvement?

25 / 77

Basic concepts in parallel program e�ciency

26 / 77

: running time

Matrix of size and processes

Breakdown down:

Computation time
Communication time
Idle (waiting on data to continue)

27 / 77

Speedup

 execution time in serial

28 / 77

Ideally:

29 / 77

Amdahl's law

30 / 77

20

18

16

14

12

10

8

6

4

2

0

Amdahl's Law

Parallel portion

Number of processors

50%
75%
90%
95%

Sp
ee

du
p

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

31 / 77

This law is not perfect

Decomposition into completely serial and parallelizable is simplistic
More importantly: is typically a function of .

That's why there are programs that can scale to very large sizes

32 / 77

Nevertheless, it contains a key lesson.

As you add more processes to your computation, the serial parts of the algorithm become dominant.

As ↑, more and more parts of the program need to be parallelized.

Di�culty ↑

33 / 77

Gustafson's law

The reasoning is di�erent.

Assume that we have access to a larger computer with more computing resources.

We are likely to try to solve a larger problem on that computer.

For example, we may decide that we can allocate 1 hour to do the calculation and decide on the problem size
based on this requirement.

34 / 77

Workload: .

We expect a speed-up of on the parallel part.

Assume that we increase the problem size by so that the overall runtime is about the same.

New workload: .

35 / 77

The parallel runtime is:

This is what we wanted.

We have a computer that goes times faster and we have assigned times more work.

The overall runtime is constant.

36 / 77

The speed-up is now:

This is a much more optimistic estimate.

37 / 77

38 / 77

39 / 77

Speedup is di�cult to visualize.

Expected to increase like .

40 / 77

Better is to plot the e�ciency.

Speedup divided by :

41 / 77

Ideally, e�ciency remains constant as increases.

42 / 77

Typical trends

43 / 77

44 / 77

45 / 77

Let's apply these ideas to matrix-vector multiplications and see which algorithm is best.

46 / 77

We need to estimate the running time of communication.

47 / 77

Collective communication

48 / 77

Operation Hypercube time
One-to-all broadcast
All-to-one reduction
All-to-all broadcast
All-to-all reduction

All-reduce
Scatter, Gather

All-to-all personalized
Circular shift

49 / 77

: size of message

: number of processes

: latency

: reciprocal bandwidth

50 / 77

All-to-all broadcast: process has data → process has data

All-to-all reduction: process has data → process has data

All-to-all personalized: process has data → process has data

Circular shift: process sends data to process mod .

51 / 77

Application to matrix-vector product

52 / 77

Row partitioning

Serial:

Parallel: computation + communication

53 / 77

E�ciency:

54 / 77

Iso-e�ciency

How quickly can we increase such that the e�ciency is constant?

55 / 77

If , constant.

Proof: , and constant

56 / 77

Compare with 2D block scheme

57 / 77

Computation

Send to diagonal

 because of block partition

58 / 77

Broadcast in each column

Reduction across column

 because of collective communication

59 / 77

E�ciency

Let's compute the iso-e�ciency.

We need to look at each term in the denominator. Each term can either:

go to 0
go to a constant
go to

60 / 77

Assume that constant. Then

Second term:

The e�ciency goes to 0.

Our assumption that constant is wrong.

61 / 77

Assume that 2nd term constant. Then

First term becomes:

This works. The e�ciency converges to a positive constant.

62 / 77

Summary

Row partitioning:

2D partitioning:

Which one is better?

63 / 77

64 / 77

Higher iso-e�ciency plot is better.

This means we can maintain the same e�ciency but for a larger number of processors.

The code runs faster!

65 / 77

In the matrix-vector algorithm, we did a couple of non-trivial things:

broadcast data inside a matrix column
reduce inside a matrix row

66 / 77

Core concept: collective communications with a subset of processors

67 / 77

Groups!

Communicators!

68 / 77

Group

A group of processes used for communication

69 / 77

Communicator

Used to exchange data between processes in the same group

70 / 77

MPI provides over 40 routines related to groups, communicators, and virtual topologies!

71 / 77

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

Returns group associated with communicator, e.g., MPI_COMM_WORLD

72 / 77

int MPI_Group_incl(MPI_Group group, int p, int *ranks, MPI_Group *new_group)

Creates new_group with p processes.

ranks contains the ranks of processes to appear in new_group.

73 / 77

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *new_comm)

New communicator based on group.

mpi_group.cpp

74 / 77

MPI_Comm_create

All processes in that group must call MPI_Comm_create with the same group as argument.

This means that MPI_Comm_create should be called by the same processes, in the same order.

This implies that the set of groups speci�ed across the processes must be disjoint.

75 / 77

$ salloc --partition=CME -N 1 -n 8 mpirun mpi_group
Rank= 0; Group rank= 0; recvbuf= 6
Rank= 1; Group rank= 1; recvbuf= 6
Rank= 2; Group rank= 2; recvbuf= 6
Rank= 3; Group rank= 3; recvbuf= 6
Rank= 4; Group rank= 0; recvbuf= 22
Rank= 5; Group rank= 1; recvbuf= 22
Rank= 6; Group rank= 2; recvbuf= 22
Rank= 7; Group rank= 3; recvbuf= 22

76 / 77

 MPI_Group world_group;
 MPI_Comm_group(MPI_COMM_WORLD, &world_group);
 int ranks[2][4] = {{0, 1, 2, 3}, {4, 5, 6, 7}};
 int mygroup = (rank < NPROCS / 2) ? 0 : 1;
 MPI_Group sub_group;
 MPI_Group_incl(world_group, NPROCS / 2, ranks[mygroup], &sub_group);
 MPI_Comm sub_group_comm;
 MPI_Comm_create(MPI_COMM_WORLD, sub_group, &sub_group_comm);
 MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, sub_group_comm);

77 / 77

