
CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

“Programs must be written for people to read, and only incidentally for machines to execute.” — Abelson and
Sussman
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We will illustrate several concepts in distributed memory computing using a linear algebra example, the matrix-
vector product.

We will cover two topics:

understanding and modeling performance
extending collective communications to groups of processes
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Matrix-vector product
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Strategy 1: row partitioning
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Step 1: replicate  across all processes

MPI_Allgather()
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Step 2: local product; no communication

matvecrow.cpp
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// Gather entire vector b on each processor using Allgather
MPI_Allgather(&bloc[0], nlocal, MPI_FLOAT, &b[0], nlocal, MPI_FLOAT,
            MPI_COMM_WORLD);
// sending nlocal and receiving nlocal from any other process

// Perform the matrix-vector multiplication involving the
// locally stored submatrix.
for(int i=0; i<nlocal; i++) {
    for(int j=0; j<n; j++) {
        x[i] += a[i*n+j] * b[j];
    }
}
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Strategy 2: column partitioning
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Step 1: calculate partial products with each process
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Step 2: reduce all partial results

MPI_Reduce()

Step 3: send sub-blocks to all processes

MPI_Scatter()
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Performance is very similar to row partitioning.
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If we have many processors, previous approaches lose e�ciency.

16 / 77



Better approach: 2D block partitioning
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Step 1: P2P communication

Step 2: broadcast in each column

Step 3: local matrix-vector product
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Step 4: reduction across columns
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In this approach, we have avoided communications between all processes.

Only subsets communicate.
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In addition, we can assign a process per block.

More processes can be used compared to row/column partitioning.
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How can we quantify this improvement?
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Basic concepts in parallel program e�ciency
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: running time

Matrix of size  and  processes

Breakdown down:

Computation time
Communication time
Idle (waiting on data to continue)
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Speedup

 execution time in serial
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Ideally: 
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Amdahl's law
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This law is not perfect

Decomposition into completely serial and parallelizable is simplistic
More importantly:  is typically a function of .

That's why there are programs that can scale to very large sizes
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Nevertheless, it contains a key lesson.

As you add more processes to your computation, the serial parts of the algorithm become dominant.

As  ↑, more and more parts of the program need to be parallelized.

Di�culty ↑
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Gustafson's law

The reasoning is di�erent.

Assume that we have access to a larger computer with more computing resources.

We are likely to try to solve a larger problem on that computer.

For example, we may decide that we can allocate 1 hour to do the calculation and decide on the problem size
based on this requirement.
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Workload: .

We expect a speed-up of  on the parallel part.

Assume that we increase the problem size by  so that the overall runtime is about the same.

New workload: .
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The parallel runtime is:

This is what we wanted.

We have a computer that goes  times faster and we have assigned  times more work.

The overall runtime is constant.
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The speed-up is now:

This is a much more optimistic estimate.
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Speedup is di�cult to visualize.

Expected to increase like .
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Better is to plot the e�ciency.

Speedup divided by :
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Ideally, e�ciency remains constant as  increases.
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Typical trends

43 / 77



44 / 77



45 / 77



Let's apply these ideas to matrix-vector multiplications and see which algorithm is best.
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We need to estimate the running time of communication.
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Collective communication
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Operation Hypercube time
One-to-all broadcast 
All-to-one reduction
All-to-all broadcast 
All-to-all reduction

All-reduce
Scatter, Gather

All-to-all personalized
Circular shift

49 / 77



: size of message

: number of processes

: latency

: reciprocal bandwidth
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All-to-all broadcast: process  has data  → process  has data 

All-to-all reduction: process  has data  → process  has data 

All-to-all personalized: process  has data  → process  has data 

Circular shift: process  sends data to process  mod .
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Application to matrix-vector product
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Row partitioning

Serial:

Parallel: computation + communication
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E�ciency: 
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Iso-e�ciency

How quickly can we increase  such that the e�ciency is constant?
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If ,  constant.

Proof: , and  constant
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Compare with 2D block scheme
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Computation

Send  to diagonal

 because of block partition
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Broadcast in each column

Reduction across column

 because of collective communication
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E�ciency

Let's compute the iso-e�ciency.

We need to look at each term in the denominator. Each term can either:

go to 0
go to a constant
go to 
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Assume that  constant. Then

Second term:

The e�ciency  goes to 0.

Our assumption that  constant is wrong.
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Assume that 2nd term  constant. Then

First term becomes:

This works. The e�ciency converges to a positive constant.
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Summary

Row partitioning: 

2D partitioning: 

Which one is better?
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Higher iso-e�ciency plot is better.

This means we can maintain the same e�ciency but for a larger number of processors.

The code runs faster!
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In the matrix-vector algorithm, we did a couple of non-trivial things:

broadcast data inside a matrix column
reduce inside a matrix row
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Core concept: collective communications with a subset of processors
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Groups!

Communicators!
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Group

A group of processes used for communication
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Communicator

Used to exchange data between processes in the same group
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MPI provides over 40 routines related to groups, communicators, and virtual topologies!
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int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

Returns group associated with communicator, e.g., MPI_COMM_WORLD
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int MPI_Group_incl(MPI_Group group, int p, int *ranks, MPI_Group *new_group)

Creates new_group with p processes.

ranks contains the ranks of processes to appear in new_group.
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int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *new_comm)

New communicator based on group.

mpi_group.cpp
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MPI_Comm_create

All processes in that group must call MPI_Comm_create with the same group as argument.

This means that MPI_Comm_create should be called by the same processes, in the same order.

This implies that the set of groups speci�ed across the processes must be disjoint.
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$ salloc --partition=CME -N 1 -n 8 mpirun mpi_group
Rank= 0; Group rank= 0; recvbuf= 6
Rank= 1; Group rank= 1; recvbuf= 6
Rank= 2; Group rank= 2; recvbuf= 6
Rank= 3; Group rank= 3; recvbuf= 6
Rank= 4; Group rank= 0; recvbuf= 22
Rank= 5; Group rank= 1; recvbuf= 22
Rank= 6; Group rank= 2; recvbuf= 22
Rank= 7; Group rank= 3; recvbuf= 22
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  MPI_Group world_group;
  MPI_Comm_group(MPI_COMM_WORLD, &world_group);
  int ranks[2][4] = {{0, 1, 2, 3}, {4, 5, 6, 7}};
  int mygroup = (rank < NPROCS / 2) ? 0 : 1;
  MPI_Group sub_group;  
  MPI_Group_incl(world_group, NPROCS / 2, ranks[mygroup], &sub_group);
  MPI_Comm sub_group_comm;
  MPI_Comm_create(MPI_COMM_WORLD, sub_group, &sub_group_comm);
  MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, sub_group_comm);
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