CME 213, ME 339—Spring 2021

Eric Darve, ICME, Stanford

Stanford University

“Programs must be written for people to read, and only incidentally for machines to execute.” — Abelson and
Sussman

1777

We will illustrate several concepts in distributed memory computing using a linear algebra example, the matrix-
vector product.

We will cover two topics:

e understanding and modeling performance
e extending collective communications to groups of processes

2177

Matrix-vector product

r = Ab

3/77

Matrix A Vector b Vector X

a4/77

Strategy 1: row partitioning

5/77

Allgathexr()

6/77

Step 1: replicate b across all processes

MPI_Allgather ()

7177

Step 2: local product; no communication

matvecrow.cpp

8177

// Gather entire vector b on each processor using Allgather

MPI_Allgather (&bloc[0], nlocal, MPI_FLOAT, &b[0], nlocal, MPI_FLOAT,
MPI_COMM_WORLD) ;

// sending nlocal and receiving nlocal from any other process

// Perform the matrix-vector multiplication involving the
// locally stored submatrix.
for(int i=0; 1i<nlocal; i++) {
for(int j=0; j<n; j++) {
x[1] += al[i*n+j] * b[j];
}

9777

Strategy 2: column partitioning

10777

Partial products

11777

Step 1: calculate partial products with each process

127177

Step 2: reduce all partial results

MPI_Reduce()

Step 3: send sub-blocks to all processes

MPI_Scatter ()

14777

Performance is very similar to row partitioning.

15777

If we have many processors, previous approaches lose efficiency.

16/77

Better approach: 2D block partitioning

17177

18777

First column Send b to the Send b down each
contains b diagonal processes column

19777

Step 1: P2P communication
Step 2: broadcast in each column

Step 3: local matrix-vector product

20/ 77

Step 4: reduction across columns

22177

In this approach, we have avoided communications between all processes.

Only subsets communicate.

23177

In addition, we can assign a process per block.

More processes can be used compared to row/column partitioning.

24 177

How can we quantify this improvement?

25177

Basic concepts in parallel program efficiency

26/ 77

T,(n): running time
Matrix of size n and p processes
Breakdown down:

e Computation time
¢ Communication time
e |dle (waiting on data to continue)

27177

Speedup

T (n) execution time in serial

_ Ti(n)

> Tp(n)

28177

Ideally: S ~ p

29177

Amdahl's law

Ti(n)
>0 T+ (- AL
Sp(n) ~ - <3

30/77

Speedup

20

18

16

14

12

10

B sy
/// “7
7
7

Amdahl's Law

Parallel portion

Number of processors

/ 50%
/L e 75
/ —_—— 90%
[———t— —— ———]——— T T T T T T T T T T L e e W ST MY ™
-’-—
4 -
/ e
o (q\] - -] o (g\] < o) \o (g\|
- (g\| w (=] (=] = - e ~
- (@\] A g >} \& (g\]
o (o)

65536

31777

This law is not perfect

e Decomposition into completely serial and parallelizable is simplistic
e More importantly: f is typically a function of n.

That's why there are programs that can scale to very large sizes

32/77

Nevertheless, it contains a key lesson.
As you add more processes to your computation, the serial parts of the algorithm become dominant.
As p T, more and more parts of the program need to be parallelized.

Difficulty T

33/77

Gustafson's law

The reasoning is different.
Assume that we have access to a larger computer with more computing resources.
We are likely to try to solve a larger problem on that computer.

For example, we may decide that we can allocate 1 hour to do the calculation and decide on the problem size
based on this requirement.

34 /77

Workload: fT1(n) 4+ (1 — f)T1(n).
We expect a speed-up of p on the parallel part.

Assume that we increase the problem size by p so that the overall runtime is about the same.

New workload: fT1(n) + (1 — f)pTi(n).

35777

The parallel runtime is:

(1 - f)pTi(n)

fTi(n) + = fTi(n) + (1 — f)Ti(n) = Ti(n)

This is what we wanted.
We have a computer that goes p times faster and we have assigned p times more work.

The overall runtime is constant.

36/77

The speed-up is now:

_ J(n) + (1 = f)pTi(n)
fTi(n) + (1= f)Ti(n)

Sp(n) ~ f+(1—fp

This is a much more optimistic estimate.

Sp(n)

37177

Speedup - S(P)

120

100

80

20

Gustafson's Law: S(P) = P-a*{P-1)

I
x-0.1*(x-1) —

x-0.2%(x-1)
X-03*(x-1y —
-044(x-1) ——
05 % (x-1)
x - 0.6%(x-1)
X - 07 % (x-1
x - 0. x-1)

T0.0#* (x_ljfj..-f"_"

Mumber of Processors - P

100 120

38777

1. Profile

Application
5. Change and 2. laentity
Performance
Test Code oo
Limiter

é Reflect

4b Bu1ld Knowledge

3. Analyze Profile
& Find Indicators

39/77

Speedup is difficult to visualize.

Expected to increase like p.

40/77

Better is to plot the efficiency.
Speedup divided by p:

Sp(n) _ Ti(n)
p pTy(n)

Ep(n) =

41777

Ideally, efficiency remains constant as p increases.

42 /77

Typical trends

43 /77

efficiency

0.8

0.6

0.4

0.2

50

no of processes

100

44 /77

100

50

6 A
o o

0.8
0.2

Aouaiiyys

work

45/77

Let's apply these ideas to matrix-vector multiplications and see which algorithm is best.

46 /77

We need to estimate the running time of communication.

47177

Collective communication

48 /77

Operation
One-to-all broadcast
All-to-one reduction
All-to-all broadcast

All-to-all reduction

All-reduce
Scatter, Gather
All-to-all personalized
Circular shift

Hypercube time

min{(¢; + t,m)logp, 2(tslogp + t,m)}

tslogp + twm(p — 1)

min{(¢; + t,m)logp,2(tslogp + t,m)}
tslogp + t,m(p — 1)
(ts + tuwm)(p — 1)
ts +t,m

49 177

m. size of message
p: number of processes
ts: latency

ty: reciprocal bandwidth

50777

All-to-all broadcast: process 2 has data a; — process 1 has data U;a;

All-to-all reduction: process ¢ has data U;a; ; = process 1 has data Zj Qi

All-to-all personalized: process 7 has data U:a; ; = process ¢ has data U;a; ;
j%i,j 73,

Circular shift: process ¢ sends data to process (i + q) mod p.

51777

Application to matrix-vector product

52/77

Row partitioning
Serial:
Ti(n) = an’

Parallel: computation + communication

2
n
Tpo(n) = a? + Blnp +yn

53777

Ti(n) = an’
pT, = an® + Bplnp + ypn
Efficiency: E = 11 /(pT))

1

Epln) = 1+ (B/a)plnp/n? + (v/a)p/n

54/77

|so-efficiency

How quickly can we increase p such that the efficiency is constant?

55/77

1
" 1+ (B/a)plnp/n? + (v/a)p/n

If p=0(n), E,(n) = constant.

E,(n)

Proof: plnp/n* — 0, and p/n = constant

56/77

Compare with 2D block scheme

57177

Computation

n2

a_
p
Send b to diagonal
n_
B+v5

\/D because of block partition

58777

Broadcast in each column
(B+775)log/p
Reduction across column
(B+775)log /P

log /p because of collective communication

59777

Efficiency

1
1+ (B/a)(plogp)/n? + (v/a)(p"/?logp) /n

E,(n)

Let's compute the iso-efficiency.
We need to look at each term in the denominator. Each term can either:

e o010 0
e g0 to a constant
e g0t0 OO

60/ 77

Assume that (plog p) /n? ~ constant. Then
p = ©(n"/logn)
Second term:

pl/? logp N nlogl/2 n

> OO
n n

The efficiency E,(n) goes to 0.

Our assumption that (plog p) /n? ~ constant is wrong.

61/77

Assume that 2nd term (p'/2 log p) /n ~ constant. Then
p = O(n?/log’n)
First term becomes:

plogp n?/logn
n2 n?

\
4

This works. The efficiency converges to a positive constant.

62/77

Summary

Row partitioning: p = O(n)
2D partitioning: p = ©(n?/log® n)

Which one is better?

63/77

— n
nA2/logh2 n
nA2

iso-efficiency p

0 5k 10k 15k

work size W

64 /77

Higher iso-efficiency plot is better.
This means we can maintain the same efficiency but for a larger number of processors.

The code runs faster!

65/77

In the matrix-vector algorithm, we did a couple of non-trivial things:

e broadcast data inside a matrix column
e reduce inside a matrix row

66 /77

Core concept: collective communications with a subset of processors

6/7/77

Groups!

Communicators!

68/77

Group

A group of processes used for communication

69/77

Communicator

Used to exchange data between processes in the same group

70/ 77

MPI provides over 40 routines related to groups, communicators, and virtual topologies!

17177

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

Returns group associated with communicator, e.g.,, MPI_COMM_WORLD

72177

int MPI_Group_incl(MPI_Group group, int p, int *ranks, MPI_Group *new_group)

Creates new_group with p processes.

ranks contains the ranks of processes to appear in new_group.

73177

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *new_comm)

New communicator based on group.

mpi_group.cpp

74177

MPI _Comm_create

All processes in that group must call MPI_Comm_create with the same group as argument.
This means that MPI_Comm_create should be called by the same processes, in the same order.

This implies that the set of groups specified across the processes must be disjoint.

/5177

S salloc

Rank=
Rank=
Rank=
Rank=
Rank=
Rank=
Rank=
Rank=

~NOo o WN B

AV I]

AV N) AV I] AV I AV I AV I]

AV I]

—-—partition=CME -N 1 -n

Group
Group
Group
Group
Group
Group
Group
Group

rank=
rank=
rank=
rank=
rank=
rank=
rank=
rank=

03
15

b

e \ve

- e

AY I 1

W NREP O WN

AY I]

recvbuf=
recvbuf=
recvbuf=
recvbuf=
recvbuf=
recvbuf=
recvbuf=
recvbuf=

8 mpirun mpi_group
6
6
6
6

22
22
22
22

76177

MPI_Group world_group;

MPI_Comm_group (MPI_COMM_WORLD, &world_group);

int ranks[2][4] = {{o, 1, 2, 3}, {4, 5, 6, T}};

int mygroup = (rank < NPROCS / 2) ? 0 : 1;

MPI_Group sub_group;

MPI_Group_incl(world_group, NPROCS / 2, ranks[mygroup], &sub_group);
MPI_Comm sub_group_comm;

MPI_Comm_create(MPI_COMM_WORLD, sub_group, &sub_group_comm) ;
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, sub_group_comm) ;

77177

