C++ Refresher Tutorial

January 10t, 2020

Stanford University

Outline

= C++ Core Concepts with C++11 Emphasis
= C++ Standard Library

> Containers

> Algorithm & Functional

= C++ Code Compilation, Toolchain, and Workflow
> Compiling on the Command Line
> Makefiles

Stanford University

C++ Core Language Constructs

Stanford University

Basic Data Types
= |nteger & Floating Point Types

" [unsigned] char, short, int, long
= float, double
= Pointers
» Use nullptr, not the macro NULL
= Arrays
» Statically allocate by Type foo[n]
> Decay into pointers, e.g. int[] = int *
= Strings
> Can be char *orstd::string
= References
> Denoted with ampersand: Types

» “Safe” pointers: can’t be null

Stanford University

C++11 & Memory Management

= Any memory allocated dynamically must be freed.

= C: malloc & free
int *arr = (int *) malloc(n * sizeof (int));

free(arr);

= C++: new & delete, with [] for arrays
Foo *f = new Fool();

delete £f;

int *arr = new int[4];

delete]] arr;

Stanford University

C++11 & Memory Management

= C++11 introduces smart pointers, which automatically manages
dynamic memory for you.

= std::unique ptr lets only one variable reference the given
memory, and releases when out of scope.

= std::shared ptr lets multiple variables reference the memory, only
releasing when no one references it.

#include <memory>

std::shared ptr<Foo> p foo = std::make shared<Foo>(...);

Stanford University

Memory Management Example

= Open memorymgmt .cpp
= Compile by make memorymgmt
= Runby ./memorymgmt
= Three examples to implement
> malloc & free
» new & delete
» std::shared ptr<T>

What do you notice?

Stanford University

Structs & Classes

= Both very similar in C++

» Structs have default public
members

» Classes have default private
members

» Use this keyword to refer to
class members or functions

> Can be omitted if clear

= Constructors typically initialize &
allocate resources

= Destructors typically release
resources

class Foo {
int a ; // private
public:

Foo (int f);

~Foo () ;

void bar () ;
private:

void barl () ;

s

Foo f£(1);

f.bar();

f.barl(); // compile error
Foo *fl = new Foo(l);
fl->bar () ;

Stanford University

Inheritance & Polymorphism in C++

To allow subclasses to provide
custom implementations, declare
base function virtual

Subclass must have same
method signature to override

> Optionally put override to let
compiler verify

For “pure” base classes, provide
no implementation by setting = 0.

class A {

public:

virtual void foo () = 0O;
i
class B : public A {
public:

void foo () override {...}

s

B b(); // normal
A *bl = &b;
bl->foo(); // calls B::foo

Stanford University

Inheritance & Polymorphism Example

= Open inherit.cpp

= Compile by make inherit
= Runby./inherit

= Key Takeaway

> Even if you have a pointer to a superclass, C++ will call the derived
function unless you explicitly say not to

Stanford University

Operator Overloading

= |t's useful to define custom operations on our objects.
= C++ allows you to override most operators like

» Math: +, -, *, /, &, |, ~, ©, ++, etc.
= Comparison: &&, | |, !, !'=, ==, etc.
= Array [] and function call ()

= Assignment =

Stream operators << and >>
= Stream operators cannot be defined as a member function

struct Foo {
int bar;

Y

Foo Foo::operator + (const Foo& b) {
return Foo(this->bar + b.bar);

Stanford University

Templates

= Some algorithms and data types are data-agnostic

= Use templates to specify placeholder types!

= Add template <typename T> before your function or class
definition
* Does not have to be T, anything is fine

template <typename T>
struct Foo {
T data;
I
Foo<int> f£(); // holds ints

template <typename U>

U foobar (const U& input);

int ul(...);

int u2 = foobar(ul); // type inferred

Stanford University

Exceptions

If you encounter something that
breaks pre- or post-conditions,
throw an exception

Similar in idea to assertions but
exceptions can be handled

Useful when testing edge cases
in code

#include <stdexcept>
void foo () {

if (something bad) {
throw std::exception(“yikes”);

try {
foo();

} catch (const std::exceptioné& e) {
cerr << “caught” << endl;

Stanford University

DenseMatrix Example

= Open densematrix.cpp
= Compile by make densematrix
= Runby./densematrix

= Key takeaways:
> We can overload the () operator with two versions: a getter and setter

> Stream operators are not class functions. Require separate template
parameter and friend keyword to access private functions.

Stanford University

Lambdas

= C++11 introduces lambdas, which are like mini functions
= Also known as predicates or anonymous functions
= General form:

[capture group] (parameters) { return ... }

= Capture group: allows variables from outer scopes to be used inside
> Pass by value: [variable]

Pass by reference: [s&variable]

Class Member variables: [this]

Pass everything by value: [=]

Pass everything by reference: [&]

N~

N~

N~

N~

Parameter list usually defined by function taking lambda.
Lambdas do not have to be simple one line statements!

Stanford University

C++ Standard Library

Stanford University

Containers

" std::vector<T>:resizeable array
> std::vector<T> (n) — set size
» ::resize (n) — expands/shrinks vector
> [index] — get/set element
» ::push back (T) —insert at end of vector

" std::1ist<T>: doubly linked lists

> Most operations are the same
> Some special operations unique to lists, like : : sort

= std::queue<T>: standard FIFO
> Given some other container, only allow pop/enqueue operations

Stanford University

Iterators

= Containers have begin () and std: :vector<T> foo = ...

end () functions for easy autos itr = foo.begin () ;

Iteration while (itr != foo.end()) {
= C++11 introduced ranged for 1tr++

loop

= Not all iterators created equal: for (auto& i : foo) { ... }

Iterator category Defined operations

e read

S e increment (without multiple passes)

Forwardlterator
Bidirectionallterator

RandomAcccssTterator « increment (with multiple passes)

» decrement
« random access
lterators that fall into one of the above categories and also meet the requirements of Qufputlterator are called mutable iterators.

® write

DT » increment (without multiple passes)

Iterators that fall into one of the above categories and also meet the requirements of Contiguousiterator are called contiguous
iterators.

Contiguouslterator ¢ contiguous storage

Stanford University

The <algorithm> Header

std::for each (InputIt first, InputlIt last, <lambda>)
> Lambda: [] (T« item) { .. }
> Apply a lambda to each element

std::transform(InputlIt first, InputlIt last, Inputlt
dst, <lambda>)

» Lambda: [] (T& item) { return .. }
> Apply a lambda to each element and put it in another place

std::sort (InputlIt first, InputIt last, <lambda>)
> Lambda: [] (const T& a, const T& b) { return true; }
» Sorts elements according to given lambda or default comparison

Stanford University

The <numeric> Header

= std::accumulate (InputIt first, InputIt last, T init,
<lambda>)

> Lambda: [] (T& sum, U& val) { return new sum }
> Add all elements according to given lambda

" gstd::iota(ForwardIt first, ForwardIt last, T wval)
» Same idea as range iterator from Lecture 1
> Start at val and increment until done

std: :vector<int> foo (10);

std::iota(foo.begin(), foo.end(), 0);
// foo = [0, 1, 2,..., 9]

int sg sum = std::accumulate (foo.begin(), foo.end(),
[] (int& sum, int& val) { return sum + (val * wval); }

) ;

Stanford University

Numeric Practice

= Open numeric.cpp

= Compile by make numeric

= Runby ./numeric

= Goal: summing every other element in a vector

Stanford University

C++ Compilation & Tools

Stanford University

Compiling Code on the Command Line

= Most code in CME 213 will be compiled via command line

General order of flags for gcc/g++
g++ -I{include} -1{linking} {C/CXXFLAGS} <file>

Example
g++ -o main —-std=c++1l -Wall -g main.cpp

-std=c++11 enforces the C++11 standard
-Wall turns on all warnings
—g compiles in debug info

| like to use -pedantic (no extensions) and -Wextra

Stanford University

Compiling via Makefiles

= Annoying to manually specify flags and file every time
= Makefiles makes this easier!
= Run on command line: make <target>

CXXFLAGS=-g —-std=c++11 -Wall
INCLUDE=include/

default: main

main: main.cpp
g+t+ $(CXXFLAGS) —-IS(INCLUDE) $< -o $@

clean:

rm —f *.0 main

Stanford University

Wrapping up...

Should know basics of:

> Smart pointers

> Operator overloading

» Inheritance and polymorphism

» Templates, Exceptions, Lambdas
» Standard Library Headers

Mastery not necessary!
Ability to google these features is good enough
HW1 is the most C++ feature-heavy!

Stanford University

Any Questions?

Stanford University

