SUMMER WORKSHOPS

FUNDAMENTALS OF DATA SCIENGE

ICME Fundamentals of Data Science

Stanford University

Introduction to
High-Performance Computing

Eric Darve

Stanford University

Logistics of workshop

* Schedule: Thursday and Friday, 1to 4 PM
* GitHub page:

https://ericdarve.github.io/icme-hpc-summer-2022/

* Shared Google notebooks:

https://drive.google.com/drive/folders/
lpwvw HvZMtQgZ1l00nl95]DOUt-KPd xy

https://ericdarve.github.io/icme-hpc-summer-2022/
https://drive.google.com/drive/folders/1pwvw_HvZMtQqZl00nl95jDOUt-KPd_xy
https://drive.google.com/drive/folders/1pwvw_HvZMtQqZl00nl95jDOUt-KPd_xy

Stanford University

Content of workshop

1. Introduction to High-Performance computing; history of
HPC and current trends

2. How to program a multicore processor using OpenMP?
This 1s the basis of HPC programming and an easy entry
point.

3. GPU processors provide the backbone of HPC platforms
for number crunching. We will cover OpenACC to write
HPC programs for GPU processors.

Stanford University

Part 1
Introduction to HPC
History of HPC computers

Stanford University

What is high-performance computing?

* Standard computers perform tasks sequentially, that is,
transaction-by-transaction.

* This means that the next transaction, or job, happens only
when the computer completes the previous one.

* |n contrast, HPC uses many resources such as processors
to complete many jobs simultaneously.

Stanford University

Supercomputers

* Forthe most part, HPC occurs on supercomputers.

* These powerful systems help companies solve problems
that could otherwise be insurmountable.

* T[hese problems, or tasks, require processors that can
carry out instructions faster than standard computers.

* Thisis achieved by running many processors in parallel
to obtain answers within a practical duration.

Stanford University

HPC hardware

* HPC jobs require fast disks and high-
speed memory.

* HPC systems include computing and
data-intensive servers with powerful
CPUs that can be vertically stacked.

* HPC systems often have powerful
graphics processing units (GPUs)
that can run general-purpose
computations.

€ Stanford

University

NVIDIA HPC system

Stanford University

HPC system designs

What is parallel computing?

Parallel computing HPC systems involve hundreds of
processors, cach running calculation payloads
simultaneously.

Stanford University

HPC system designs

What is cluster computing?

* Cluster computingis a type of parallel HPC
system consisting of a collection of computers
working together as an integrated resource.

* Clusters can accommodate multiple applications
and resources. They are managed by policy-
based scheduling and can handle a dynamic
workload consisting of large numbers of jobs.

€ Stanford

University

Stanford XStream compute cluster

Stanford University

HPC system designs

What are grid and distributed computing?

Grid and distributed computing HPC systems
connect the processing power of multiple
computers within a network. The network can
be a grid at a single location or distributed
across a wide area in different places,
linking network, compute, data, and
Instrument resources.

Main vendors: Amazon Web Services

(AWS), Microsoft Azure, and Google
Cloud Platform

Cloud Infrastructure Services Market

111111

(laaS, PaaS, Hosted Private Cloud)

111111

222222
MMMMMM

amazon 339

Source: Synergy Research Group

https://www.srgresearch.com/

Amazon data center

Stanford University

Applications of HPC

Some of the key applications include:

Big data: massive multi-dimensional datasets
 Data analytics
* Extreme performance database

° Machine learning

Stanford University

Automotive and aerospace
CFD-aerodynamic modeling
FEA-impact and structural strength analysis

CAD and CAM

Banking, financial services markets and

insurance
Monte Carlo simulations
Risk analysis
Fraud detection

Electronics design automation (EDA)
Chip design and optimization
Circuit simulation and verification
Manufacturing optimization

Film, media and gaming

Rendering

Applications!

Computer-aided graphics

Molecular modeling and biology simulation
Computer-generated images (CGl)

Protein docking
Transcoding and encoding

Oil and gas

Real-time image analysis and processing

Seismic data processing

Government and defense

Reservoir simulation and modeling
Intelligence agency

Geospatial analytics
Fraud analysis

Terrain and topology mapping
Climate modeling

CFD-aerodynamic modeling
Weather forecasting

Wind simulation
Energy

Retail

Nuclear stewardship

Inventory analysis
Exploration

Logistics and supply chain optimization

Life sciences

Sentiment analysis
Genomic processing and sequencing

Marketing offers
Pharmaceutical design

Stanford University

A short history of HPC

The beginnings:

 HPC market: scientific discoveries; Fortran (Formula
Translation)

* Cray Research: supercomputers; focus: floating-point operations

* 1960’s: specialized and expensive supercomputers; cold war,
strategic necessity

* 1980’s: number of processors goes up. Multiple processors
(sometimes hundreds) are connected through a network.

Stanford University

A short history of HPC

Vendors turn to commodity markets where processors
are sold in large quantities.

Monolithic supercomputer systems splinter as many
commodity components can be purchased from
competing vendors.

The economic barrier of entry is lowered by at least a
factor of ten.

Stanford University

Beowulf clusters

-

i,

LI
I

|

* Operating system: UNIX.

* 1981, Linus Torvalds released a
freely available version of Linux.

* Message Passing Interface (MPI)

library.
Borg, a 52-node Beowulf cluster used by

the McGill University pulsar group to search for
pulsations from binary pulsars

https://en.wikipedia.org/wiki/Pulsar

Stanford University

Beowulf clusters

* The performance of “Beowulf Clusters” (named for the
NASA project that developed these systems) comes close
to that of supercomputers of the day: commodity-grade
computers + free and open source software + MPI.

* High-performance interconnects are developed; the
market settles on InfiniBand (Mellanox)

* Name "supercomputer” replaced by “HPC systems.”

Stanford University

The multi and many core explosion

Three issues limit an increase In clock speed:

1.

Memory Speed: the gap between processor and
memory speed continued to grow

2. Instruction Level Parallelism: the increasing
difficulty of finding enough parallelism in a single
Instruction stream

Power Wall: increased processor frequency causes
an Increase In operating temperature

Stanford University

The multi and many core explosion

* The era of multi-core: dual-core processors; more cores
added to each new generation of processors

* Commodity Graphics Processing Units (GPUs) that
contain large numbers (hundreds to thousands) of small,
efficient cores.

Stanford University

Exascale computing and co-design

“On the Role of Co-design in High Performance Computing,” R. F. Barrett et al.

The co-design strategy Is based on developing partnerships with computer vendors
and application scientists and engaging them in a highly collaborative and iterative
design process well before a given system is available for commercial use. The process
IS bullt around identifying leading edge, high-impact scientific applications and providing
concrete optimization targets rather than focusing on speeds and feeds (FLOPs and
bandwidth) and percent of peak. Rather than asking “what kind of scientific
applications can run on an Exascale system” after it arrives, this application-
driven design process instead asks “what kind of system should be built to meet
the needs of the most important science problems.” This leverages eep
understanding of specific application requirements and a broad-based computational
sclence portfolio.

Stanford University

HPC history in pictures

—~—

ASCI Red: Sandia National | BlueGene/L: Lawrence Tianhe-1A: National

L Laboratory ~ Livermore National Laboratory _ Supercomputing Center in
CM-5: Los Alamos National Lab No.1 from Jun 1997 until Jun L. No.1 from Nov 2004 until Nov | Tianjin

No.1 in Jun 1993 2000 . 2007 No.1 in Nov 2010

-
—

\ Titan: Oak Ridge National . ‘ .
Laboratory o . . Supercomputer Fugaku: RIKEN
No.1 in Nov 2012 SN Talhu_nght. Natlc_mal Summit: DOE/SC/Oak Ridge Center for Computational
Supercomputing Center in : .
Wuxi National Laboratory Science

No.1 from Jun 2016 until Nov No.1 from Jun 2018 until Nov No.1 from Jun 2020 until Nov
2017 2019 2020

Accelerator/Co-Processor Performance Share

@ NVIDIA Tesla V100
@ NVIDIA A100
NVIDIA Tesla V100 SXM2
@ NVIDIA Tesla P100
@ NVIDIA A100 SXM4 40 GB
© NVIDIA A100 40GB
@ NVIDIA Volta GV100
@ NVIDIA Tesla K40
@ NVIDIA A100 80GB
@ Matrix-2000
@ Others

O © 00 N O O A WO N -

N N T R §
AWODN -

Accelerator/Co-Processor
NVIDIA Tesla V100
NVIDIAA100
NVIDIA Tesla V100 SXM2
NVIDIA Tesla P100
NVIDIAA100 SXM4 40 GB
NVIDIAA100 40GB
NVIDIA Volta GV100
NVIDIA Tesla K40
NVIDIAA100 80GB
Matrix-2000
NVIDIA 2050
NVIDIA Tesla K40m
NVIDIA Tesla K40/Intel Xeon Phi 7120P
NVIDIA Tesla P100 NVLink

Count
80
15

—
- a2 NN W s b OV ODN

—

System Share (%)

16

3
24
1.6

1
0.8
0.8
0.6
0.4
0.2
0.2
0.2
0.2
0.2

Rmax (GFlops)

243,448,930
226,001,000
91,975,490
49,751,640
81,312,000
30,133,600
269,439,000
8,824,090
13,806,000
61,444,500
2,566,000
2,478,000
3,126,240
8,125,000

LINPACK achieved Theoretical peak

Rpeak (GFlops)

475,572,809
324,135,290
182,486,069
73,680,456
115,202,938
47,814,630
362,564,722
14,612,320
18,688,410
100,678,664
4,701,000
4,946,790
5,610,481
12,127,069

Cores
5,059,976
2,125,952
2,059,208
1,005,472

869,192
315,812
4,408,096
201,328
124,160
4,981,760
186,368
64,384
152,692
135,828

Mellanox

Intel

gaA A WO N =

Interconnect Family Performance Share

Interconnect Family

Gigabit Ethernet

Infiniband

Omnipath

Custom Interconnect

Proprietary Network

Count

247
168
42
37
6

System Share (%)
49.4
33.6
8.4
7.4
1.2

@ Gigabit Ethernet
® Infiniband
¢ Omnipath

@ Custom Interconnect

@ Proprietary Network

Rmax (GFlops)
592,043,220
1,200,636,818
178,516,898
322,955,564
491,906,300

Rpeak (GFlops)
1,210,167,243
1,832,049,310

281,314,234
483,020,993
597,474,433

Cores
19,827,104
22,511,764
4,361,016
21,616,076
8,609,792

Cores per Socket Performance Share

@ Others

Stanford University

Performance development

Performance Development
10 EFlop/s

1 EFlop/s ot
100 PFlop/s * e
w7’ adu ® Sum 4 # = #500

10 PFlop/s O A

1 PFlop/s o® AAA--'

100 TFlop/s ..d' |

Performance
%
g
=

10 TFlop/s - ..’. . n"
1 TFlop/s * arad a"
100 GFlop/s "
10 GFlop/s o
1 GFlop/s m

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025

Lists

But before diving in further...
Let’s get to know each other

Stanford University

Instructor

* Eric Darve, ME, ICME, darve@stanford.edu

* Numerical linear algebra, machine learning for mechanics
and engineering, parallel computing

Stanford University

Teaching Assistant

* Chenzhuo Zhu

* |am a graduating Ph.D. student at Stanford EE,
advised by Prof. Bill Dally. | am interested in
computer architecture and memory system design o 0 EBE B
for data center applications. s 7

* | grew up in Beljing, China. | received my B.S degree
from Tsinghua University before coming to Stanford.

* | have worked as a teaching assistant for CME
courses on scientific and parallel programming.

* |am also a snowboarder and a private pilot.

OInternational Falls

o Havre
o i
WA $ okslispll : Sosgow wiison "t
9 Wl y o
Seattle o/ e O o w\sso ' - ND Grand Forks Bemidji Virginia Lake Superior
Olympia o 3 Spokane ; OGreat Falls o e
o Tacoma ik Missoula Dickinson ; Bismarck Fargo Duluth o Presque Isle
Aberdeen akima RS Lawiston < H?|ena MT Miles City O Jamestown MN 0 Marquette =
Astoria | __Longview bia = 9 oBUtte : Billinas 3 Saint-Georges
Vancouver ColumP™= " Walla Walla " Bozeman o 9 P TS _ Rhinelander Escanaba
Portland y Pendleton L i o Bacarel] Petoskey
aimon . . i &
ortlan S aneapollsc St. Paul Wausay ~ oMarinette ME Bangor
L) L)
, e}
Salem John Day 1D OCOdy Gillette o SD ,.Pierre Brookings > I oGre‘en Bay Cadilac Lake Huron OBurllngton Augusta.
Eugene OBend ; 2o o ORap'd City : A 0 2 gg%lcwinona Oshkosh 0 _Watertown VT Lensii Ol
GoosBay OR - Idaho Falls Thermopolis ' oMitchell OSIOUX Falls Schestes Vs Lake Michigan M saginaw Lake Ontario NH proviand
- \@ e 5, , Mason City Madison Milwaukee Grand ~ © Rochester . d
Roseburg (LA ‘wy e Chadron . ; ‘ ° 0 cRapids | ansing o) oSyracuse Albany - Gulf of Mai
Pocatello 0 b . siouxCi Waukegan o a . uij oy Maine
Grants l’ass0 Medford it " Montpefier Douglas C‘SIOUXCIty o Waterloo : 9 & Racine oy Wihdsor , Buffalo NY ° MA Boston
5 a o A Cedar Rapid K o . : Erie _Jamestown Ith Worcestero @
- Klamath Falls — Rt _Scottsbiff NE Norfolk : In:oe‘s Cedar Rapids Chicago Detroit Lake Erie o o thaca - Providen(cagem
s o . o
9 M. Shasta OGreen River e ch Ginaha 0 pDavenPOrt lo\urora Toled é) Cleveland Snton CT.Ha rtford ;Newport
O ; 0 eyenne North Platte Des Moi Fort Wayne Youngstown P A) ;
Winnemucea ko Salt Lake City 0 oSidney o Lincoln coaInEs . " o oBridgeport
O, Reddin : O Great Salt Lake " ® Il Q : Feara . 0 o f SR NJ ONew York
Cape Mendocino Eureka & o ,Vernal Craig sEortCollins P ’ 2 IN Lma A H " oPittsburgh Harrisburg Long .
\ Chico OProvo - Denver 2 e ,Quincy Springfield Indianapolis A Wheeling .:.Y°rk » Trenton
5 Reno Price Boulder g Sl \ Oy T ST o Columbus Morgantown : .
Ukiah kg Ey UT Grand unct Kansas City I Bl siigh ' Gatimore B, ciphia
ial Yuba Cit i rand Junction . \ as.C _Bloomington .y i s 5 [¢] CAtlantic Ci
o oYubaCity - 4 Carson City ® o .CO Colorado Springs caiie e O _ Columbia Lo 0 9" 5 Cincinnati o® WV Vindauid o MD DE (apeMayl ity
Sacramento NV Moab Gumnison © ° Topeka o~ O Pt - DC WASHINGTON, D.C
@ o 0 KS ° o) ; e Frankfort Huntington L.
Pueblo o - lefferson Ci Belleville Louisville rankiol XERS 3 L
i Monticello ° enar o, D MO by Evansyille BN harieston Ochadotteswue
San Franc'sco()aoaklaniModesto Cedar City Q. ’kansds _oD0gde City Ochhrta > (Olensboro Lexington “Beckley VA Richmond
Merced _Bishop Durango o Springfield o 2
i Joseoo v Fresno 6 oSt' it © Al \ Coffeyville o BT _Paducah Roanoke © Lynchburg Virginia Beach
Santa Cruz OOSalmas 5 ORston Guymon Nertead Ponca City ~Bristol _Danville Norfolk
Monterey _Visalia Las Vegas e e Tulsa Nashville i i 00
) O Boulde City Grand Canyon o Fayetteville : o Knoxville ‘ reensboro
CA A o o AR Dumas o o Jonesboro kel Murfreesboro O W o . RaIeighG -
. Bakersfield 5 ® Santa Fe . Oklahoma City i 6 ' o cRlEe
San Luis Obispa, o) o Flagstaff “Gallup Tucumca Amarillo 6 % _Fortsmith Merhs TN e Charlotte N C (et
Lancaster .~ Kingman Albuquerqueo Little Rock 72 > Greenville 2 i Pamlico Sound
Santa Barbara o “Needles AR Lawton o F o o sl
k 3 . o) Clovis o) A Q Huntsville glTere) : Wilmington
Point Conception ~~ © pagadena San Bernardino AR [socoro o W Hot Springs” A R ' Pine Bluff c}é? o Tupelo et .Co|umbva o 9
Los Angeles oPalm Springs Phoenix NM Lubbock ! Sherman N Birmingham “Sumter o) Cape Fear
NORTH Long Beach 9 Roswell o e Texarkana 2 o) Augusta o CAiken Myrtle Beach
? o Denton < ElDorado Ogreenyille . R SC
P A C l F I C Channel Islands San Diego Yuma bG“a L OAlamogordo Dallas Tuscaloosa Macon Charleston
0 o Abilene 0 Tl Shreveport MS AL Montgomery S
i le) icali Tucson Las Cruces oCarlsbad o Ft. Worth yler o o DN Beaufort
OCEAN Tijuana Mexicali o N b - o Vicksbur® ® Jackson Qe G A Dublin
Willcox gEI Paso lessn - o g OSavannah
aco Nacogdoches 1 _Albany
& Douglaé Ciudad Judrez oPecos sEanAngelo o < oAIexandna Hattiesburg Dothan & Pl Brunswick NORTH
Nogales 2, Fort Stockton Killeen® : : 2 S
P 9 % . TR e Hntsvile LA e Mobie e . ATLANTIC
OBarrow BEAUFORT SEA A Austin Enfayetia e aton ougeo OPensacoIa A allahassee Jacksonville
Prudhoe Bay = = Houst Biloxi ® O C EAN
CHUKCHI SEA ° ey ouston 0 . R
Gfinaga Al San Antonio New Orleans . Apalachicola Gainesville
\ i [(ape San Blas ~
°Point Hope o Drifie 0 OGaIveston Houma v _Ocala oDaytona Beach
0
Bering GEAglekas Victoria© Freeport Orlando
Strait T o Cape Canaveral
ey ampa
Vit R Corpus Christi 3 P
oNome CaiBanke ‘.Laredo . .O ‘ St. Petersburg O FortPierce
Norton Sound 2 Riigsville 0 AL West Palm
& ALASKA Lake Okeechobee Beach
£ o
Edinburg ' GU/f Of Mexico Ft. Myers
B i c . .
Bethel Kaua' s, NORTH PACIFIC OCEAN e Naples Miami
o S, B .
& Anchorage Ni‘ihau Is. Libnie Wahiawa g
illamna Lake \S O'ahuls. O Moloka'i Is. (ape Sable L
$ > Honolulu Wailuku Key West (¢°
BERING SEA Juneau ° Lana'i Is. Mauils. o s o
. i a
_— Kodiak Gulf of Alaska Sitka HAWAII st
g Kailua-Kona> Hilo
" Prince e
Cold Bay NORTH PACIFIC OCEAN TR S ek Hawali Is.

Stop Video

Mark your current location using zoom

Y

Security

Q0
@' Vv

Participants

Chat

I V4

Pause Share Annotate

T

Text

Draw

Stamp

» v X

* @ ?

s
Spotlight

&

Eraser

Format

D

Undo

&

Redo

-
m

Clear

M\/

Stanford University

What this class is about

We will get an overview of parallel programming using two
very accessible but powerful techniques:

1. Shared memory multicore processors using OpenMP.

2. GPU computing (NVIDIA + AMD) using OpenACC.

Stanford University

Thinking parallel

Parallel programs often look very different from
sequential programs.

ololelelolele Ny

Seqguential thinking

] (l H Ay e STARVGRIEE T
/ [T /
/| is SEsas: N
Vil s R N
- :
[% \ 1l = |
o7] {
Y) 7 \
— — '\ }
ML g IRy : " |
| XM /) et o] i
i A
(| = =i | ‘
= 5 f o
/
: =i RULE
W7 === LN
. Ll 2 1 :- (# L
| 3 {
- i
I8 |
s L\
= \ i
Al -
\r/fz’ l‘ AL/; l';l !%}‘Eg:_
— \ ~
1 JAR!
// 1‘ ll\ /
~/ / / \/
7
\\‘\1\7
—t2] I e
N P N ~ | A\ \
| == 2 ‘
11—
% e b
{ } IN\VA)
L

Parallel thinking

How would you count the number of candies of each color?

ot s

=

¥B (B GBS G S B B I AT B B GBS BB IR
C ol “ I ok~ R C ok ol ok o T -~ R C o

¥ G G B S B B G AT B Y I P GBS IS g s

= s >

KI5 (B G 5 4 I B G IS I IS L B B B I G oI
TS (B (B (I IS B B I IS I B (5 I I B S B
P 1S 5 P B 5 P P B PP 5 B P 5 B 1 B
KBS B 5 GBS B B P
KIS 5 G P GBS G oI (B G I (B IS GBS I B (I I S P

KIS o (I I B B YD I 1 B B I B P T B8

P B oI 5 oI L B B P P (S 1P % 5P S
el R R
WP IS s W P B el ol

Using 2 cores

= s >

¥P8 58 8 w¢¢Wﬂ‘ﬂ‘Wﬂ ﬁﬂ‘ﬂﬂﬂ#

¥ 38 3B 5B W:O‘WWWﬂ‘ﬂ s Wﬂﬂ S
FT ﬂ‘# Wﬂ‘ﬂ‘ﬁ# pedih W ” oI ©

HlFS 38 #ﬁﬂ ﬁﬁ‘#ﬂ‘ ﬁ‘#ﬂﬁ#

b ﬁ#ﬁ‘ﬂﬂﬁ'ﬁ‘ﬁ‘ﬁﬁﬁ‘#ﬂﬂ#ﬁ g

ﬂ‘#ﬂ‘ﬂ ﬁﬁ#ﬁﬂ‘ ﬂ‘ﬂ‘#ﬁﬂ‘ b

yIS 538 58 ﬂ‘ ¥ P8 58 58 ﬁ ﬂ‘ﬂﬂ‘ ¥ P8 58
¥ ;P8 55 ¥ ﬂﬂ‘ﬂﬁﬁﬂ‘ﬂ‘ﬂﬁﬂ S

A #ﬂ‘ 2 ﬁﬁﬁﬁ ﬁ‘ﬁﬂ S

EZ RN S # #ﬁﬂ# s g #ﬂ‘ﬁﬁﬁ

Using 4 cores

'IIIIII:;IIIIII.'-I IIIIIII ; IIIIIIIJIIIIII:;IIIIII'-I IIIIIII ; IIIIIIIJIIIIII:;IIIIII'-I IIIIIII ; IIIIII.IJIIIIII:; IIIIIIIIIIIIIII ; IIIIII.I.'IIIIII:;IIIIII'-I IIIIIII ; IIIIIII

L et et O AT 1ot oot et St e et O e SO ot ot reetB It

Using 200 cores

Stanford University

The initial step of counting candies goes fast.

But after that, the following steps of reduction become problematic.

Can we use a single core to calculate the final sum for each candy?
* Thisis inefficient

How can we compute the final reduction efficiently and in parallel?

Stanford University

Efficient algorithm requires a tree reduction

toj1]8f-1]oj2|3]s|2|-3]2]7]0|nfo]2

T
AR oA OO o At OO el T N bt TNt 8|-2f{10]6]0|9]3|7]2|-3]2]|7]0]1|0]2
M&fwfwf,wwj.g‘iﬁ:wvﬁﬁaﬁw,wﬁ‘w 8|7 |13|13|0 |9 |3 |7 |2(3[2[7|0[1]0]2

41]20|1313joj9|3f7]2|3]2]7]0nfo]2

Stanford University

Counting candies in parallel is more
complicated than we initially thought.

Stanford University

Part 2

Programming multicore processors using OpenMP

Stanford University

Let’s talk about shared memory computing.
This is the simplest method.

It applies to your laptop, desktop computer, or even your
phone.

Stanford University

Shared memory processor architecture

Processing
elements

Cache

Global
memory

M1 M2

Interconnection network Network

Stanford University

Shared memory processor architecture

Schematic
* Several processors or cores
* A shared physical memory (global memory)

* Aninterconnection network to connect the processors
with the memory

Stanford University

Multicore performance

Memory is key to developing high-performance multicore
applications

* More cores do not necessarily mean faster execution.

Memory traffic and time to access memory are often
more critical than flops.

* Memory is hierarchical and complex. jacK

Stanford University

Our teaching platform

* Google Colab

* Allows running CPU and GPU sample codes in the
cloud with no setup required!

* Demo: colab_demo.1ipynb

Stanford University

OpenMP and OpenACC

In this workshop, we will focus on two solutions:
* OpenMP to program multicore processors

* OpenACC to program GPUs

Stanford University

OpenMP makes scientific multithreaded programming very easy!

* OpenMP simplifies multicore programming significantly.

* In many cases, adding one line of code is sufficient to
make It run in parallel.

* OpenMP is the standard approach in scientific computing
for multicore processors.

Stanford University

Goals of OpenMP

Standardization:

* Provide a standard among a variety of shared memory architectures/
platforms.

* Jointly defined and endorsed by a group of major computer hardware and
software vendors.

Simple but powerful:

* Establish a simple and limited set of directives for programming shared
memory machines.

* Significant parallelism can be implemented by using just 3 or 4 directives.

* This goal is becoming less true with each new release, unfortunately.

Stanford University

Goals of OpenMP

Ease of use:
* Provide the capability to parallelize a serial program incrementally.

* Provide the ability to implement both coarse-grained and fine-grained
parallelism.

Portability:
* The APl is specified for C/C++ and Fortran.
* Public forum for APl and membership

* Most major platforms have been implemented, including Unix/Linux
and Windows.

Stanford University

Reference material

* OpenMP website https://openmp.org
* Wikipediahttps://en.wikipedia.org/wiki/OpenMP

 LLNL tutorial https://hpc-tutorials.llnl.gov/
openmp

* Intel https://www.intel.com/content/dam/www/
public/apac/xa/en/pdfs/ssqg/
Programming with OpenMP-Linux.pdf

Vendors provide similar but different solutions for loop parallelism, causing portability and maintenance problems.
Kuck and Associates, Inc. (KAl) | SGI | Cray | IBM | High Performance Fortran (HPF) | Parallel Computing Forum (PCF)

In spring 7 vendors, cOMPunity, the group The OpenMP ARB reaches OpenMP releases its OpenMP gears toward
Intel, and DOE agree on of OpenMP users, is 15 members of which 5 first Technical Report version 4.1 and 5.0.
the spelling of parallel formed, and organizes are supercomputing that outlines how Topics under
loop and form the workshops on OpenMP in centers. This mixture of accelerator and discussion include
OpenMP ARB. By North America, Europe, vendors and users is a coprocessor devices more support for
October, version 1.0 and Asia. trademark of OpenMP’s vl s el heterogeneous
of the OpenMP cooperative style of systems, improvements
specification for Fortran 2.0 operation. to the tasking model,
is released. support for
u transactional memory,
1.0 data affinity, and
History of
Mi Begin discussions other programming
inor :
o about adding task models.
clarifications. :
y parallelism to OpenMP.
76 116
pages pages pages
OpenM P EIEIEDENEDED
Loop Parallelization Tasking Heterogeneity
77 100 242 317 346 538
pages pages pages pages pages pages
\ ~

_—
Unified

Supports min./max.
reductions in C/C++

Unified C/C++ and 3.0
Fortran: Bigger than both
individual specifications Incorporates

combined. The first task parallelism—a hard Supports accelerator/
International Workshop problem as OpenMP coprocessor devices,

on OpenMP is held. It struggles to maintain SIMD parallelism, thread
becomes a major forum its thread-based nature, affinity, and more.

for users to interact with while accommodating Expands OpenMP
vendors. the dynamic nature beyond its traditional

https:/www.openmp.org/ .

uncategorized/openmp-timeline/ 1L | |.|.||||||I|||IIIIIII|I||||| |

110 698 1020 1350 1330 1370 1600 1880 2320 3100 4100 5370 6010 6470
OpenMP ARB Membership Evolution . Permanent ARB Auxiliary ARB Members

17

15 15
1 1 1
11 11 11 11 . . 3

. OpenMP Google Scholar Hits

https://www.openmp.org/uncategorized/openmp-timeline/
https://www.openmp.org/uncategorized/openmp-timeline/

Stanford University

Hello World example

L et’s take a simple piece of code to get started:

for (int 1 = 0; 1 < n; ++1) {
X[1] 1;
v[I1] std::sqgrt(float(1));
’

Demo: omp_hello_world.ipynb

Stanford University

How can we parallelize this code?

* Assume you have multiple cores that can do
computation in parallel.

* The forloop can be split across the cores, and each core
can compute a small chunk of the iterations.

for (int 1
X[1] 1;
v[1] std::sqgrt(float(1));

¥

O; 1 < n; ++1) {

Stanford University

How can we parallelize this code?

core O

for (int 1 = 0; 1 < n; ++1) {

¥

Xx[1]
v[1i]

1,
std::sqgrt(float(1));

core 1

core 2 core 3

We can distribute the computation across the
different cores using OpenMP.

Stanford University

OpenMP code

L et’s parallelize the first loop that calculates x[i] and yli].

const i1nt num_threads = 4;

omp_set_num_threads (num_threads);
#fpragma omp parallel for

for (int 1 = 0; 1 < n; ++1) {
x[1] = 1;
v[1] = std::sqgrt(float(1));
core[1] = omp_get_thread_num() ;
h
for (1nt 1 = 0; 1 < n; ++1)
printf("Iteration %d was computed by thread %d\n", 1, core[i]);

Stanford University

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

NOOUOESE, WNEOS

Output

was
was
was
was
was
was
was
was

computed
computed
computed
computed
computed
computed
computed
computed

thread
thread
thread
thread
thread
thread
thread
thread

W OWMNMNEFEEFEROOS

Stanford University

Unit testing

Writing HPC code for scientific applications is not easy.

Thinking in parallel is much more complicated than thinking
seguentially and 1s error-prone.

An important strategy to find errors Is to use unit testing:

* Write a small piece of code Iin a function

* Immediately test that the function works as expected

Stanford University

GoogleTest

An excellent library for unit testing is GoogleTest.
It provides a simple infrastructure to write and manage tests.

| et’s learn how it works and how to use it.

Stanford University

Example of test

Function to Initialize a vector:

volid 1nit_1() {
for (int 1 = 0; i < n; ++1) x[i] = 1i;

h

Demo: googletest.ipynb

Stanford University

How to write a unit test

* Usethemacro TEST
* Use testing macros like ASSERT_EQ.

* Many additional macros and functions available in the library.

TEST(demoTest, 1nit) {

1nit_1();

for (1nt 1 = 0; 1 < n; ++1) ASSERT_EQ(x[1], float(1));
}

Stanford University

Beware of roundoff errors

* Calculations on a computer are not exact.

 Each operation generates a small roundoff error.

* The approximate number of accurate digits depends on
the precision of the floating point format.

Single precision Double precision

~ 7.2 ~15.9

Stanford University

“Exact” test

vold 1nit_1() {
for (1nt 1 = 0; 1 < n; ++1) x[1] = 1;
. }
This test does not suffer void sum_x() {

sum = 0;

from roundoff errors. for (int i = ©; i < n; ++i) sum += x[i]:

h
TEST(demoTest, sum) {

1n1t_1();
sum_x () ;
ASSERT_EQ(sum, float(n)):;

¥

Stanford University

With larger numbers, roundoff errors start appearing

vold 1nit_1() {
for (int 1 = 0; i < n; ++i) x[i] = 1i:
h
vold sum_x() {
sum = 0;
for (int i = 0; i < n; ++1i) sum += x[1];
h
TEST(demoTest, sum_1) {
1n1t_1();
sum_x() ;
const float expd = float(n * (n - 1) / 2.);
ASSERT_NEAR(sum, expd, n * expd * mach_eps);
printf("Roundoff errors are equal to: %9.6f; tolerance threshold: %9.6f.\n",
abs((sum - expd) / expd), n * mach_eps);

¥

Roundoff errors are equal to: 0.000042; tolerance threshold:
0.001192.

Stanford University

Is my calculation accurate?

Determining whether a calculation is “correct” can be difficult.

Is the difference due to a coding error, or is it a roundoff error?

Stanford University

Unit testing and debugging

* Unit testing Is one of the many methods you need to learn
to be able to write correct code for complex applications.

 Additional documentation at:

https://google.github.io/googletest/

https://google.github.io/googletest/

Stanford University

TEST (ompTest, omp_Lloop) {
pragma omp parallel for
for (int 1 O; 1 < n; ++1)
x[1] = 1;
y[i] = 1 * 1;
h
for (1nt 1 = 0; 1 < n; ++1)
ASSERT EQ(x[1], 1) ;
ASSERT_EQ(v[1], 1 * 1);
}
pragma omp parallel for
for (int 1 = 0; 1 < n; ++1)
, z[1] = x[1] + y[1];
for (int 1 = 0; 1 < n; ++1)
ASSERT_EQ(z[1], (float) (1
h

¥

Demo: omp_lab.ipynb

+ 1 * 1));

RUN

OK
RUN

OK
RUN

OK
RUN

OK

PASSED

Let’s test our
OpenMP Hello World!

Runn1ng ma1n() from googletest—-main/googletest/src/gtest_main.cc

Running 4 tests from 1 test suite.

] ompTest.
] ompTest.
] ompTest.
] ompTest.
] ompTest.
] ompTest.
] ompTest.
] 4 tests

from ompTest
omp_loop

] Global test environment set-up.
] 4 tests
] ompTest.

omp_loop (@ ms)

omp_reduction

omp_reduction (@ ms)

omp_schedule
omp_schedule
omp_collapse
omp_collapse
from ompTest

(0 ms)

(0 ms)
(1 ms total)

] Global test environment tear-down
4 tests from 1 test suite ran.
] 4 tests.

(1 ms total)

Stanford University

More on OpenMP

* OpenMP is a vast topic with a lot of additional
functionalities.

* We will only review some of the main features.

* An important one iIs the reduction operator.

Stanford University

Reduction

Consider the following code:

float sum = 0;
for (1nt 1 = 0; 1 < n; ++1) {
sum += x[1];

¥

Stanford University

Race condition

sum += x[1];

If multiple cores attempt to update the variable sum at the
same time, the result becomes undetermined.

This will lead to an erroneous result. This is a bug!

Stanford University

OpenMP reduction

We need to tell the compiler that sum should be computed
differently.

Adding numbers is called a reduction operation.

We have to use the OpenMP reduction clause to get the
correct code.

Stanford University

Reduction clause

float sum = 0;
#tpragma omp parallel for reduction(+ : sum)
for (1nt 1 = 0; 1 < n; ++1) {
sum += x[1];

¥

* The final result will now be correct.

* Otherreduction operators: -, *, max, min

* +logical and boolean operators

Stanford University

How should we schedule loops?

* Loop scheduling is critical for performance.

* OpenMP has extensive functionalities to improve
performance of for loop executions.

* This can be achieved by specifying different loop
scheduling policies.

Stanford University

Example of static policy

#tpraema omp parallel for schedule(static, 32)
for (int 1 = 0; 1 < n; ++1) {
z[1] = x[1] + yI[1];

¥

Stanford University

What does this do?

Stanford University

schedule(static, 1)

#tpraema omp parallel for schedule(static, 1)

thread O n n
thread 1 n
thread 2 a
thread 3

Stanford University

schedule(static, 2)

#tpraema omp parallel for schedule(static, 2)

thread O n n
thread 1 n
thread 2
thread 3 a

Stanford University

#pragma omp parallel for

for (1nt 1 = 0; 1 < n;
x[1] = 1;
y[i] = 1 * 1;

}
#pragma omp parallel for

for (1nt 1 = 0; 1 < n;

for (1nt 1 = 0; 1 < n;

++1) {

Example

schedule(static, 32)

++1) z[1]

x[1] + v[1];

++1) ASSERT_EQ(z[i], (float) (i+i*i));

Stanford University

schedule(dynamic, 1)

#tpragma omp parallel for schedule(dynamic, 1)

thread O n a a
thread 1 a
thread 2
thread

Stanford University

chunk size

#tpragma omp parallel for schedule(dynamic, 32)
for (int 1 = 0; 1 < n; ++1) z[1i] = x[1] + vI[i];

for (int 1 = 0; 1 < n; ++1) ASSERT_EQ(z[1], (float) (i+1*1));

Stanford University

schedule(guided)

#tpragma omp parallel for schedule(guided)

many iterations fewer iterations
thread O - - ‘ * Large iteration chunks are assigned
initially.
thread 1 - - . * Asthe calculation progresses,
smaller chunks are assigned.
— 1 1
— 1 I

* |n most cases, this allows all cores to
finish their computation
simultaneously, which is optimal.

Stanford University

Nested loops

* What happens if the number of iterations is small?
* Few iterations are assigned to each core.

* This may lead to a significant load imbalance, i.e., one of the cores finishes
much later than the others.

thread O
thread 1
thread 2

thread 3

Stanford University

Balancing the workload

* |In general, it Is better to parallelize loops with many
iterations.

* This makes it easier for the scheduler to assign work to the
cores so that they all finish around the same time.

* |f your loop does not have enough iterations, you have the
option of “merging” it with the following nested loop.

* Thisis called loop collapse in OpenMP.

Stanford University

Example of loop collapse

pragma omp parallel for collapse(2)

for (int 1 =
for (int J
x[1 * no
v[1i * no
h
h
for (int 1
for (i1nt 1
for (int jJ

N © ©

OF

+ + |

1
O;
]]
J]

9. A

. A A

no ;
< n@
1 x
1_

++1) {

++J) 1
n@ + J;

J;

n; ++1) ASSERT_EQ(x[1], float(1i));

no ;

< hO;

++1)

++7J) ASSERT_EQ(v[1 * n@ + 7],

float(1 - J));

Stanford University

Example of loop collapse

pragma omp parallel for collapse(2)
for (i1nt 1 = 0; 1 < nO; ++1)
for (int J = 0; J < n®; ++3) z[1 * nO@ + J] = x[1 * n®@ + J] + v[1 * nO® + J];

for (int 1

= 0; 1 < nO; ++1)
for (int j =

O®; J < nO; ++3) ASSERT_EQ(z[1 * n® + 3], float(1 * (NG + 1)));

Stanford University

Many other OpenMP concepts

- atomic

« Critical

- s1ngle

- task

- barrier, taskwailt

* Reference guides

https://www.openmp.org/resources/refguides/

Stanford University

Part 3
Programming GPU processors using OpenACC

GEFORCE

RTX

Stanford University

GPU for scientific computing

GPUs from NVIDIA and AMD boast significant single and double
precision performance due to a huge number of cores.

These are specialized processors that can deliver high-
performance but only on certain types of calculations:

* Massive amount of parallel operations
* Must be mainly data parallel

* Requires offloading large chunks of computations to the GPU
to amortize the cost of transferring data to/from the GPU.

Stanford University

Performance trends

Number of Physical Cores/Multiprocessors, High-End Hardware

102 T T T T
[' ' ! : Xeon Phi

Physical Cores/Multiprocessors
'l
Z.

INTEL Xeon CPUs
NVIDIA GeForce GPUs
AMD Radeon GPUs
INTEL Xeon Phis

1

Xeon Phi 7120 (KNC)v/v
v

7290 (KNLf

—h—

—— |

—0—
1

2008 2010 2012 2014
End of Year

Karl Rupp

2016

GFLOP/sec

10* |

—_
(@)
w

Theoretical Peak Performance, Single Precision

-‘(rbfr"‘gb ----- gg----?‘“-r ----- R AR LEEE T TRY INTEL Xeon CPUs —de—
G p':" & NVIDIA GeForce GPUs —fil—
' : ' AMD Radeon GPUs +)
INTEL Xeon Phis =——SgF—]
1 1 1 1 1
2008 2010 2012 2014 2016
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Stanford University

History

* GPUs initially focused on 3D graphics = computing the color
of each pixel on the screen based on a 3D scene model.

* Featured example: ray tracing global illumination (RTXGl)

Stanford University

GPGPU

General purpose GPU computing:

* Extension to general scientific
computations.

* Solving equations on a grid i1s similar to
rendering: perform the same regular
calculations on a large dataset.

Stanford University

Deep learning

Recent advances in GPU computing target deep learning.
1. Linear algebra: matrix-matrix multiplications.

2. Mixed precision arithmetic: represents floating point
numbers using different numbers of binary bits.

>
=

1Versl

Stanford Un

Tensor Cores

H100 FP16

A100 FP16

Y-y Yy VYNNI
NSNS
NSNSy
Y J 20l d 7
r J J U
- - fhddddddddddd@r@r@r
A e B o o
v - ;.. T T T TR EEE SR SRS &

N 3 v

& ..’!!!!!!!!!
rmuuddddd ok b d dvRv@r@le
A AR R R R S B S B S S Sl

V77779 %%9Y ,

V77 7L AR U'UUUU""IIIJ
' J 7 -
' I [

L 2 B B B e e
y v ‘ ‘ - - - - - -
Vi ada
£ al ww ; RN
N e v v AW W
S A\
" . M N . ’ . \ "
'S\ A\ \ VY Db edbadindiadiadd
LMW . .
A S Y A \\! =
LY Y\ \) N
-’ "
[Ay

L B s
L

\ R, R W)
A b A AL b

v v v v v v v
- - - - L - -
L oGvMuvvivnLvvRRRRRw
S AvMMRRRRARRRRRRw
COVMARAARAARARARARRRRY

NSNS SNN
FNSSNSSN
B sy
FNNSSESSN
(11
L L LS A A AR
it ¢ 35w A A

LL L ES : CE R RS ﬁn
&
.4. L . » » » » .".‘
7277 2%)y AANXR
1777771 R i s oooooooo%o
A7~ LR 4000444
I 77 7L IR fpayyd %%%%%%%oo
Joffef=f W TEEAYS BB 00000404
rrrz7'" o XXX
. AR Aeaenemeneae
) wa f AN AN
) A R A XX XXX)
| R e XA oooooo
ﬁ"‘- » v Aoh b oy ‘.“.‘
SOTTT Y .

RRRRN 5 ‘ 4

.
- - - - - -

CEGCRERERRR
CLARMRMRMRRR
CAMMRMRRwR
AL A L A A\

H100 FP16 Tensor Core has 3x throughput compared to A100 FP16 Tensor Core

Stanford University

GPUs are great for

* Dense linear algebra with a massive amount of flops

* Partial differential equation solvers: finite-difference and
regular grid calculations

° Deep neural networks
Less suitable for:
* Irregular calculations with branching and uneven workloads

* Long series of sequential operations

Stanford University

What does a GPU processor look
like?

Stanford University

Schematic organization

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache

L1 Cache
L2 Cache

L2 Cache

L3Cache

CPU

L2 Cache

DRAM

GPU

The GPU devotes more transistors to data processing.

Stanford University

GH100 (Hopper) with 144 Streaming Multiprocessors (SM)

PCI Express 5.0 Host Interface

TPC

Memory Controller
J2j|0Nuo0) Alowaw

Memory Controller
13jjonuos Aloway

Memory Controller
J2|jonuo) Alowa

—

8 s
S 3
£ S

Q S)
(&) Oh
g 2
£ S
= &

Memory Controller
Jajjoijuon Aiowap

Memory Controller
Jajjonuon Aloway

= " = = {2) 1+ = _ 38 _ {38 ! 3) g3)) (2
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

NVLink allows GPU processors to communicate without using the CPU.

Stanford University

L1 Instruction Cacl

LO Instruction Cache

Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

GH100 Streaming
Multiprocessor (SM

TENSOR CORE
4" GENERATION

LD/
ST

LD/
ST

LD/
ST

LD/

o SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

* Special Functions Units (SFUs);
execute transcendental instructions
such as sin, cosine, reciprocal, and
sguare root.

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/
ST

LD/
ST

LD/
ST

LD/
ST

* Dispatch Unit: instruction dispatch

ne

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/
ST

LD/
ST

LD/
ST

LD/

o SFU

LO Instruction Cache

| Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/
ST

LD/
ST

LD/
ST

LD/
ST

Tensor Memory Accelerator

Stanford University

How to program GPUs
Introduction

Stanford University

GPU processors are co-processors

* GPUs are different from conventional processors.
* [hey only work as co-processors.

* This means you need a host processor (e.g., Intel Core/
Xeon).

Stanford University

* Your program runs on the host and uses an application
programming interface (API) to move data back and forth
to the GPU and run programs on the GPU.

* You cannot log on to the GPU directly or run an OS on the
GPU.

CPU GPU

\/
L
O
7))
-
-
®
O
D
sl
O
(>

Asynchronous

Stanford University

OpenACC

* OpenMP can be used to program GPUs, but this is a
recent, less robust addition to the language.

* Support is currently somewhat limited.

* We will cover instead OpenACC, which was designed from
the beginning to program GPUSs.

* OpenACC = OpenMP for accelerator processor.

Stanford University

Other programming solutions

Vendor agnostic:
* OpenCL
* Numba
Vendor specific:
* CUDA
* HIP

Stanford University

OpenCL

* OpenCL: Open Computing Language

* Framework for writing programs that execute
across heterogeneous platforms, e.g., GPUs, digital
signal processors (DSPs)

* OpenCL provides a standard interface for parallel
computing using task- and data-based parallelism.

* OpenCL is an open standard maintained by
the non-profit technology consortium Khronos
Group.

Stanford University

Python

Python has extensions that allow generating GPU code.

Example: Numba

2Numba

Stanford University

Numba

Many uses.

Just-in-time compilation of Python code for performance:

from numba 1import jit
1mport random

®dJi1t (nopython=True)
def monte_carlo_pi(nsamples):
acc = 0@
for 1 1n range(nsamples):
X random.xrxandom()
Y, random.xrxandom()
if (X ** 2 +y %% 2) < 1.0:
acc += 1
return 4.0 * acc / nsamples

Stanford University

Numba multi-threaded programming

Example of parallel for loop in Numba:

dJjl1t(nopython=True, parallel=True)
def simulator(out):

for 1 inout .Shape[0]) :
out [Dh~——xth_sim()

Stanford University

Numba for NVIDIA GPUs (CUDA)

from numba import cuda, float32

acuda.jit
def matmul(A, B, C):
1, J = cuda.grid(2)
1f 1 < C.shape[0®] and 7 < C.shape[1l]:
tmp = 0.
for k 1n ran€e(A.shape[l]):
tmp += A[1, k] * B[k, 7]
C[i, J] = tmp

Stanford University

Numba for AMD ROC GPUs

from numba 1mport roc, float32

aroc.jit
def matmul(A, B, C):
1 roc.get_global_1d(0)
J roc.get_global_1d(1)
1f 1 < C.shape[0®] and 7 < C.shape[l]:
tmp = 0.
for k 1n range(A.shape[1l]):
tmp += A[1, k] * B[k, 7]
C[i, J] = tmp

Stanford University

Vendor specific solutions

Stanford University

NVIDIA CUDA

NVIDIA.
CUDA

* Currently, the standard for writing GPU code.

* It only targets NVIDIA GPUs.

* Very mature and robust.

* But complex to use and requires significant code changes

* Initial release: June 23, 2007 (14 years ago)

Stanford University

AMD GPUs

* AMD has a proprietary language for
programming its GPUs called HIP.

HIP can generate code for AMD and NVIDIA
GPUs.

* HIP is close to CUDA.

* HIP is designed to allow developers to convert
CUDA code easily.

* Part of the open-source ROCm stack.

AMD ¢t

ROCM

Let’s get started with OpenACC

Stanford University

GPU access

Edit View Insert Runtime Tools He

First, you will need a GPU!

Select all cells 38 /Ctrl+Shift+A
Cut cell or selection

Copy cell or selection

Paste
Delete selected cells 38 /Ctrl+M D
|
G O tO [N Ote b O O k S ett I n S Find and replace 38 /Ctrl+H
- g Find next 88/Ctrl+G
Find previous 38 /Ctrl+Shift+G
Notebook settings

Clear all outputs

Then SeleCt GPU under Hardware Notebook settings

Hardware accelerator

GPU v @

aC C e I e rato r To get the most out of Colab, avoid using a GPU unless you need

one. Learn more

[] Background execution

Want your notebook to keep running even after you

close your browser? Upgrade to Colab Pro+

De m O: O p e n a C C — -L a b m i p y n b Omit code cell output when saving this notebook

Cancel Save

Stanford University

Hardware

You should be able to test which GPU you have access to:

[2] 1 !'nvidia-smi -—-query-gpu=gpu_name,gpu_bus_id,vbios_version ——format=csv

names—pCli.bus_1d, vbios_version
Tesla T4, 00000000:00:04.0, 90.04.A7.00.01

Demo: openacc_lab.1ipynb

Stanford University

Installation

You will need to install the NVIDIA HPC SDK, which contains

the OpenACC compiler and can generate code for NVIDIA
GPUs.

Run the cells at the beginning of the notebook to install:

. install hpc.sh installs the NVIDIA HPC SDK

2. install gtest.shinstalls Google Test

The installation takes a few minutes.

Stanford University

Our first GPU parallel loop

Very similar to OpenMP (at least in appearance)

const i1nt n = 32000000, Offloads to GPU

float* x = new float[n]; 4/////////,

#tpragma acc parallel loop “
for (int i = 0; i < n; ++i) x[i] = i;

for (int 1 = 0; 1 < n; ++1) ASSERT_EQ(x[1], float(1i));

Demo: openacc_Tlab.ipynb

Stanford University

Let’s see what the compiler says

acc_lab.cpp:
accTest_loop Test::TestBody():
7, Generating NVIDIA GPU code
10, #pragma acc loop gang, vector(128) /% blockIdx.x threadIdx.x s/

7, Generating implicit copyout(x[:32000000]) [if not already present]

What are these messages saying?

L et’s focus on gang/vector first.

Stanford University

Gang, worker, vector

This is less iImportant for us.

These variables are used because they reflect the way the
hardware I1s organized.

Thread: smallest execution unit in the program.

Stanford University

Gang, worker, vector

Vector: a group of threads that can coordinate and execute
“together.”

Worker: a group of vectors that can coordinate and execute
“together;” this is a less Important concept.

Gang: a group of workers/vectors.

Stanford University

Gang, worker, vector

For optimization purposes, the sizes of a vector, worker, or
gang can be specified.

This is a more advanced optimization.

pragma acc parallel Lloop num_gangs(40) num_workers(32) vector_length(32)
for (int 1 = 0; 1 < n; ++1) x[1] = 1;

accTest_vector_loop_Test::TestBody():
37, Generating NVIDIA GPU code
40, #pragma acc loop gang(40), worker(32), vector(32) /x blockIdx.x threadIdx.y threadIdx.x x/
37, Generating implicit copyout(x[:32000000]) [if not already present]

Stanford University

CPU and GPU memories

* The memory of the CPU and the GPU are physically
separate.

e Sodata needto be transferred between the two memories
before a calculation can be run on the GPU.

* |n this case, the compiler detected that x was initialized on
the GPU.

* |t automatically generated instructions to copy the result
from the GPU to the CPU memory.

Stanford University

Explicit data transfer clauses

#praema acc parallel Loop copvyout(x[:n])
for (int 1 = 0; 1 < n; ++1) x[1] = 1;

Clause Description

create space, initialize by copying to the device, copy back to host

o]0, .
Py at the end, release device memory

copvyin same but without copy back to host
copyout same but without initial copy to the device
Crxeate create space at the beginning, release at the end

present no action taken

Stanford University

Array shaping

#praema acc parallel Lloop copyout(x[:n])

X[:in]

- copy(array[starting_index:length])
* The first number is the start index of the array.

* The second number is how much data is to be
transferred.

Demo: openacc_lab.ipynb

Stanford University

Data locality

* (x,y) initialization

* Vector zcomputation

for (int 1 = 0; 1 < n; ++1) {
x[1] L ;
y[1]

h

for (int 1 = 0; 1 < n; ++1) {
ASSERT_EQ(x[1], float(1i));
ASSERT_EQ(y[1], float(1i * 1));

h

for (int 1

for (i1nt 1

-

?

1 * 1;

; ++1) z[1] = x[1] + y[1];
 ++1) ASSERT_EQ(z[1], float(i * (1 + 1)));

Demo: openacc_lab.ipynb

Stanford University

Data transfer

By default, the code would:
* Copy (x,y) to the device.
* Copy them back to the host for testing.
* Copy (x,y) again to the device.
* Copy zto the host.

The copies of (x,y) can be optimized.

Stanford University

acc enter data

#fpragma acc enter data create(x[:n], vli:in])
#praema acc parallel Loop
for (1nt 1 = 0; 1 < n; ++1) {
X[1] 1;
v[i] = 1 * 1;

¥

enter data create

Creates the data on the GPU and leaves it there until instructed to
delete the data.

Stanford University

acc update self

#pragma acc update self(x[:n], vl[:n])

for (int 1 = 0; 1 < n; ++1) {
ASSERT_EQ(x[1], float(1));
ASSERT_EQ(vy[1], float(1 * 1));

¥

* Because we used enter data create,the datais not
automatically copied back to the host.

* We needto add update self tocopy the data from device to
host.

 Also: #fipragma acc update device()

Stanford University

acc exit data

#tpragma acc exlit data delete(x[:n], v[:n])

This deletes the data on the GPU and frees resources.

Each enter much be matched with an exit.

Stanford University

Full code

#pragma acc enter data create(x[:n], vI[:in])
#pragma acc parallel Loop
for (int 1 = 0; 1 < n; ++1) {
Xx[1] = 1;
y[i] = 1 * 1;

¥

#pragma acc update self(x[:n], v[:n])
for (int 1 = 0; 1 < n; ++1) {
ASSERT_EQ(x[1], float(1));
ASSERT_EQ(vy[1], float(1i * 1));

¥

#pragma acc parallel loop copyout(z[:n])
for (int 1 = 0; i < n; ++1) z[1i] = x[1] + vI[i];

#pragma acc exilt data delete (x[:n], v[:n])

for (1nt 1 = 0; 1 < n; ++1) ASSERT_EQ(z[1], float(x1 * (1 + 1)));

Stanford University

Reduction

As In OpenMP, we need to use a special construct when we
have a reduction.

sum += x[1];

Otherwise, the different cores will attempt to access and
modify sum at the same time, which is a bug.

Stanford University

Reduction example

float sum = 0O;
#pragma acc data create(x[:n])
{
#fpragma acc parallel Lloop
for (int 1 = 0; 1 < n; ++1) x[1] = 1;
#tpragma acc parallel loop reduction(+ : sum)
for (i1nt 1 = 0; 1 < n; ++1) sum += x[1];
h
for (int 1 = 0; 1 < n; ++1) ASSERT_EQ(sum, float(n));

Note the data create to avold unnecessary coples.

Stanford University

collapse

* GPU are massively parallel processors.
* They can contain thousands of cores.

* Example: GeForce RTX 3090 Ti: 10,752 cores.

* So we need to generate as much concurrency (parallelism)
In our code.

* Loop fusion is critical for performance when the number
of iterations is not large enough.

Stanford University

for loop with collapse

#praema acc parallel Loop collapse(2)
for (1nt 1 = 0; 1 < n; ++1) {
for (int J = 0; J < n; ++3) {
z[1 * n + 7] x[i * n+ J] + v[1 * n + j];
l
l

* 1and] loops will be merged and executed in parallel.

* Without collapse, only the 1 loop Is parallelized while the j loop Is
executed sequentially.

* collapse allows generating n*n parallel threads instead of just n.

* This can improve performance significantly.

Stanford University

Complete example with collapse

pragma acc enter data create(x[:n * n], v[L:n * n])
pragma acc parallel Lloop collapse(2)
for (int 1 = 0; 1 < n; ++1)
for (int J = 0; J < n; ++3) {
X[1 * n + J] 1 *n + J;
vii*n+ J] =1 - 3;

¥

praegma acc update self(x[:n * n], v[:in * n])
for (int 1 = 0; 1 < n * n; ++1) ASSERT_EQ(x[1], float(i));
for (int 1 = 0; 1 < n; ++1)
for (int j = J < n; ++3J) ASSERT_EQ(v[1 * n + J], float(i - 3J));
pragma acc parallel Lloop collapse(2) copvyout(z[:n * nJj)
for (int 1 = 0; 1 < n; ++1)

for (int J = 0; J < n; ++3) z[1 * n + J] = x[1 *n + J] + v[1 * n + J];

pragma acc exilit data delete(x[:n * n], v[:n * n])
for (int 1 = 0; 1 < n; ++1)
for (int j = 0; j < n; ++3j) ASSERT_EQ(z[i * n + j], float(i * (n + 1)));

Stanford University

n body problem

Let’s look at a more complex real-life application.

We want to model the gravitational interactions between n
bodies with mass.

This is similar to modeling the motions of the planets around
the sun In the solar system.

Stanford University

Gravitational force

We start from £, = m;a, .

The accelerationis given by the gravitational force:
— 7;

F,=m. m;
Z IIF —r||3

JF1

Stanford University

Equations of motion

Stanford University

Time integrator

* We numerically solve these equations using the velocity
Verlet time integrator.

* |t's not very accurate, but it remains stable over many
time steps.

* Thisisatwo-step method.

Stanford University

Velocity Verlet

* Step 1: advance the velocity

* Step 2: advance the position
n+l __ _.n n+1
r =1+ At V!

* Repeat

Stanford University

for (int 1 =
real fx, fy
for (int 3
real3 ff

fx += ff.

fy += ff.

fz += ff.
h
force[1].X
force[1].yv
force[1].z

OF

?

X

N <

Force computation
1 < n; 1++) {
fz; fx = fy = fz = 0;
O; J < n; J++) |

forceComputation(pos[1].X,

fX;

fy;
fz;

Demo: nbody.ipynb

pos[J].x,

pos[1].v,
pos[Jl.v,

pos[1].z,
pos[]].z,

pos[J].w);

Stanford University

for (1nt

vel[1l].
vel[1l].
vel[1l].

pos[1].
pos[1].
pos[1].

h

N < X
+

N < X
+

+ +

+ +

Time step

O; 1 < n; 1++) {

force[1].x * dt;
force[1].v * dt;
force[1].z * dt;

vel[1].x * dt;
vel[1].v * dt;
vel[1].z * dt;

Demo: nbody.ipynb

Stanford University

Time integration

for (int 1 = 0; 1 < 1terations; 1++) {
segInteerate(pos, vel, force, dt, n);

h

Demo: nbody.ipynb

Stanford University

Parallel time stepping loop

#pragma acc data copy(pos[:n], vel[:n]) copvyout(forcel[:n])
for (1nt 1 = 0; 1 < 1terations; 1++) {
inteerate(pos, vel, force, dt, n);

¥

* Optimize the movement of data by reducing memory
copies between host and device.

* Only done before the iterations start and after they are
complete.

Stanford University

Nested parallel loops with reduction

pragma acc parallel Lloop
for (1nt 1 = 0; 1 < n; 1++) {

real fx, fy, fz;

fx = fy = fz = 0;
pragma acc loop reduction(+ : fx, fy, fz)

for (int J = 0; J < n; J++) {

real3 ff = forceComputatlon(pos[i].x, pos[1].vy, pos[1i].z, pos[]].X,
pos[J].y, pos[J].z, pos[J].w);

fx += ff.x;

fy += ff.y;

fz += ff.z;
h
force[1].x = fX;
force[1].y = fy;
force[1].z = fz;

}
Demo: nbody.ipynb

Stanford University

#praema acc parallel Loop

for (int 1

vel[1]

. X
vel[1i].
vel[1il].
pos[1].
nos[1].
pos[1].

N < X N

+

O; 1 < n;

+= forcel1l].

+ + +

Demo: nbody.ipynb

force[1].
force[1].
vel[1].x
vel[1].v
vel[1l].z

Parallel time step

i++) {

X

% ok N <

* dt;
* dt;
* dt;
dt;
dt;
dt;

Stanford University

Performance results

o 5 WN -

n = 4096 bodies for 20 1iterations
OpenACC: 2185.000000 ms: 3.071344 GFLOP/s
Sequential: 2206.000000 ms: 3.042106 GFLOP/s

n = 4096 bodies for 20 iterations
OpenACC: 1959.000000 ms: 3.425669 GFLOP/s
2197.000000 ms: 3.054568 GFLOP/s

n = 4096 bodies for 20 1iterations

OpenMP: 2197.000000 ms: 3.054568 GFLOP/s
Sequential: 2169.000000 ms: 3.094000 GFLOP/s
n = 4096 bodies for 20 iterations

C++: 4257.000000 ms: 1.576436 GFLOP/s

Sequential: 4257.000000 ms: 1.576436 GFLOP/s

'name=nbody; nvc++ -I. —-acc=host -0 -0 $name $name.cpp && ./$name 4096 20
'name=nbody; nvc++ -I. —acc=multicore -0 -0 $name $name.cpp && ./$name 4096 20
'name=nbody; nvc++ -I. —-acc=gpu -0 —o $name $name.cpp && ./$name 4096 20
'name=nbody; nvc++ -I. —mp=multicore -0 —-o $name $name.cpp && ./$name 4096 20
'name=nbody; g++ —-std=c++17 -I. -0 —o $name $name.cpp && ./$name 4096 20

We only use a single CPU
thread on Google compute.

1 "'name=te

st_nbody; nvc++ -I.

test_nbody.cpp:
Running main() from googletest-main/googletest/src/gtest_main.cc

. RUN

Running 5 tests from 1 test suite.
Global test environment set-up.

5 tests from nbodyTest
nbodyTest.iterations_small_@

8 tests PASSED. Maximum error = 0.
6 tests PASSED. Maximum error = 0.
6 tests PASSED. Maximum error = 0.

[0K
[RUN

] nbodyTest. 1terat10ns small_@ (259 ms)
] nbodyTest.iterations_small_1

128 tests PASSED. Maximum error = 1.13687e-13.

06 tests PASSED. Maximum error
06 tests PASSED. Maximum error

[0K

[RUN

4096 tests

3072 tests

3072 tests

[0K

[RUN

4096 tests

3072 tests

3072 tests

[0K

[RUN

16384 tests
12288 tests
12288 tests

PASSED

OK |

9.31323e-10.
7.45058e-009.

] nbodyTest.iterations_small_1 (@ ms)
] nbodyTest.iterations_medium_0

PASSED. Maximum error = 2.27374e-13.
PASSED. Maximum error = 1.49012e-08.
PASSED. Maximum error = 1. 49012e 07.

] nbodyTest.iteration

PASSED. MaximumgZ€rror = 4.76837e-07.
PASSED. Maximu = 3.8147e-06.
PASSED. MaximumN\error =

1.22935e-07.

] nbodyTest.iteration
PASSED. Maximum error = 5.96046e-07.
PASSED. Maximum error = 3.8147e-06.
PASSED. Maximum error = 4.02331e-07.
nbodyTest.iterations large (457 ms)
5 tests from nbodyTest (764 ms total)

Global test environment tear-down
5 tests from 1 test suite ran. (764 ms total)
5 tests.

—acc=gpu -0 $%$name $name.cpp gtest_main.a && ./$name

Accuracy

Roundoff errors between CPU
and GPU in single precision

Stanford University

we hope You enjoyed this workshop!

