
ICME Fundamentals of Data Science

Introduction to

High-Performance Computing

Eric Darve

• Schedule: Thursday and Friday, 1 to 4 PM

• GitHub page:

https://ericdarve.github.io/icme-hpc-summer-2022/

• Shared Google notebooks:

https://drive.google.com/drive/folders/
1pwvw_HvZMtQqZl00nl95jDOUt-KPd_xy

Logistics of workshop

https://ericdarve.github.io/icme-hpc-summer-2022/
https://drive.google.com/drive/folders/1pwvw_HvZMtQqZl00nl95jDOUt-KPd_xy
https://drive.google.com/drive/folders/1pwvw_HvZMtQqZl00nl95jDOUt-KPd_xy

1. Introduction to High-Performance computing; history of
HPC and current trends

2. How to program a multicore processor using OpenMP?
This is the basis of HPC programming and an easy entry
point.

3. GPU processors provide the backbone of HPC platforms
for number crunching. We will cover OpenACC to write
HPC programs for GPU processors.

Content of workshop

Part 1

Introduction to HPC

History of HPC computers

• Standard computers perform tasks sequentially, that is,
transaction-by-transaction.

• This means that the next transaction, or job, happens only
when the computer completes the previous one.

• In contrast, HPC uses many resources such as processors
to complete many jobs simultaneously.

What is high-performance computing?

• For the most part, HPC occurs on supercomputers.

• These powerful systems help companies solve problems
that could otherwise be insurmountable.

• These problems, or tasks, require processors that can
carry out instructions faster than standard computers.

• This is achieved by running many processors in parallel
to obtain answers within a practical duration.

Supercomputers

• HPC jobs require fast disks and high-
speed memory.

• HPC systems include computing and
data-intensive servers with powerful
CPUs that can be vertically stacked.

• HPC systems often have powerful
graphics processing units (GPUs)
that can run general-purpose
computations.

HPC hardware

NVIDIA HPC system

Stanford XStream compute cluster

What is parallel computing?

Parallel computing HPC systems involve hundreds of
processors, each running calculation payloads
simultaneously.

HPC system designs

What is cluster computing?

• Cluster computing is a type of parallel HPC
system consisting of a collection of computers
working together as an integrated resource.

• Clusters can accommodate multiple applications
and resources. They are managed by policy-
based scheduling and can handle a dynamic
workload consisting of large numbers of jobs.

HPC system designs

Stanford XStream compute cluster

What are grid and distributed computing?

Grid and distributed computing HPC systems
connect the processing power of multiple
computers within a network. The network can
be a grid at a single location or distributed
across a wide area in different places,
linking network, compute, data, and
instrument resources.

Main vendors: Amazon Web Services
(AWS), Microsoft Azure, and Google
Cloud Platform

HPC system designs

https://www.srgresearch.com/

Amazon data center

Some of the key applications include:

• 	Big data: massive multi-dimensional datasets

• 	Data analytics

• 	Extreme performance database

• 	Machine learning

Applications of HPC

Automotive and aerospace

	 CFD-aerodynamic modeling

	 FEA-impact and structural strength analysis

	 CAD and CAM

Banking, financial services markets and

insurance

	 Monte Carlo simulations

	 Risk analysis

	 Fraud detection

Electronics design automation (EDA)

	 Chip design and optimization

	 Circuit simulation and verification

	 Manufacturing optimization

Film, media and gaming

	 Rendering

	 Computer-aided graphics

	 Computer-generated images (CGI)

	 Transcoding and encoding

	 Real-time image analysis and processing

Government and defense

	 Intelligence agency

	 Fraud analysis

	 Climate modeling

	 Weather forecasting

	 Energy

	 Nuclear stewardship

	 Exploration

Life sciences

	 Genomic processing and sequencing

	 Pharmaceutical design

	 Molecular modeling and biology simulation

	 Protein docking

Oil and gas

	 Seismic data processing

	 Reservoir simulation and modeling

	 Geospatial analytics

	 Terrain and topology mapping

	 CFD-aerodynamic modeling

	 Wind simulation

Retail

	 Inventory analysis

	 Logistics and supply chain optimization

	 Sentiment analysis

	 Marketing offers

Applications!

The beginnings:

• HPC market: scientific discoveries; Fortran (Formula
Translation)

• Cray Research: supercomputers; focus: floating-point operations

• 1960’s: specialized and expensive supercomputers; cold war,
strategic necessity

• 1980’s: number of processors goes up. Multiple processors
(sometimes hundreds) are connected through a network.

A short history of HPC

• Vendors turn to commodity markets where processors
are sold in large quantities.

• Monolithic supercomputer systems splinter as many
commodity components can be purchased from
competing vendors.

• The economic barrier of entry is lowered by at least a
factor of ten.

A short history of HPC

• Operating system: UNIX.

• 1981, Linus Torvalds released a
freely available version of Linux.

• Message Passing Interface (MPI)
library.

Beowulf clusters

Borg, a 52-node Beowulf cluster used by
the McGill University pulsar group to search for

pulsations from binary pulsars

https://en.wikipedia.org/wiki/Pulsar

• The performance of “Beowulf Clusters” (named for the
NASA project that developed these systems) comes close
to that of supercomputers of the day: commodity-grade
computers + free and open source software + MPI.

• High-performance interconnects are developed; the
market settles on InfiniBand (Mellanox)

• Name “supercomputer” replaced by “HPC systems.”

Beowulf clusters

Three issues limit an increase in clock speed:

1. Memory Speed: the gap between processor and
memory speed continued to grow

2. Instruction Level Parallelism: the increasing
difficulty of finding enough parallelism in a single
instruction stream

3. Power Wall: increased processor frequency causes
an increase in operating temperature

The multi and many core explosion

• The era of multi-core: dual-core processors; more cores
added to each new generation of processors

• Commodity Graphics Processing Units (GPUs) that
contain large numbers (hundreds to thousands) of small,
efficient cores.

The multi and many core explosion

“On the Role of Co-design in High Performance Computing,” R. F. Barrett et al.

Exascale computing and co-design

The co-design strategy is based on developing partnerships with computer vendors
and application scientists and engaging them in a highly collaborative and iterative
design process well before a given system is available for commercial use. The process
is built around identifying leading edge, high-impact scientific applications and providing
concrete optimization targets rather than focusing on speeds and feeds (FLOPs and
bandwidth) and percent of peak. Rather than asking “what kind of scientific
applications can run on an Exascale system” after it arrives, this application-
driven design process instead asks “what kind of system should be built to meet
the needs of the most important science problems.” This leverages eep
understanding of specific application requirements and a broad-based computational
science portfolio.

HPC history in pictures

CM-5: Los Alamos National Lab
No.1 in Jun 1993

ASCI Red: Sandia National
Laboratory
No.1 from Jun 1997 until Jun
2000

BlueGene/L: Lawrence
Livermore National Laboratory
No.1 from Nov 2004 until Nov
2007

Tianhe-1A: National
Supercomputing Center in
Tianjin
No.1 in Nov 2010

Titan: Oak Ridge National
Laboratory
No.1 in Nov 2012 Sunway TaihuLight: National

Supercomputing Center in
Wuxi
No.1 from Jun 2016 until Nov
2017

Summit: DOE/SC/Oak Ridge
National Laboratory
No.1 from Jun 2018 until Nov
2019

Supercomputer Fugaku: RIKEN
Center for Computational
Science
No.1 from Jun 2020 until Nov
2020

LINPACK achieved Theoretical peak

Intel

Mellanox

Performance development

But before diving in further…

Let’s get to know each other

• Eric Darve, ME, ICME, darve@stanford.edu

• Numerical linear algebra, machine learning for mechanics
and engineering, parallel computing

Instructor

• Chenzhuo Zhu

• I am a graduating Ph.D. student at Stanford EE,
advised by Prof. Bill Dally. I am interested in
computer architecture and memory system design
for data center applications.

• I grew up in Beijing, China. I received my B.S degree
from Tsinghua University before coming to Stanford.

• I have worked as a teaching assistant for CME
courses on scientific and parallel programming.

• I am also a snowboarder and a private pilot.

Teaching Assistant

Mark your current location using zoom “Annotate → Stamp”

We will get an overview of parallel programming using two
very accessible but powerful techniques:

1. Shared memory multicore processors using OpenMP.

2. GPU computing (NVIDIA + AMD) using OpenACC.

What this class is about

Parallel programs often look very different from
sequential programs.

Thinking parallel

Sequential thinking Parallel thinking

How would you count the number of candies of each color?

Using 2 cores

Using 4 cores

Using 200 cores

The initial step of counting candies goes fast.

But after that, the following steps of reduction become problematic.

Can we use a single core to calculate the final sum for each candy?

• This is inefficient

How can we compute the final reduction efficiently and in parallel?

Efficient algorithm requires a tree reduction

Counting candies in parallel is more
complicated than we initially thought.

Part 2

Programming multicore processors using OpenMP

Let’s talk about shared memory computing.

This is the simplest method.

It applies to your laptop, desktop computer, or even your
phone.

Shared memory processor architecture

Interconnection network

P1

C1

P2

C2

M2

Pn

Cn

Mn

Processing
elements

…

M1

Cache

Global
memory

Network

Schematic

• Several processors or cores

• A shared physical memory (global memory)

• An interconnection network to connect the processors
with the memory

Shared memory processor architecture

• Memory is key to developing high-performance multicore
applications

• More cores do not necessarily mean faster execution.

• Memory traffic and time to access memory are often
more critical than flops.

• Memory is hierarchical and complex.

Multicore performance

• Google Colab

• Allows running CPU and GPU sample codes in the
cloud with no setup required!

• Demo: colab_demo.ipynb

Our teaching platform

In this workshop, we will focus on two solutions:

• OpenMP to program multicore processors

• OpenACC to program GPUs

OpenMP and OpenACC

• OpenMP simplifies multicore programming significantly.

• In many cases, adding one line of code is sufficient to
make it run in parallel.

• OpenMP is the standard approach in scientific computing
for multicore processors.

OpenMP makes scientific multithreaded programming very easy!

Standardization:

• Provide a standard among a variety of shared memory architectures/
platforms.

• Jointly defined and endorsed by a group of major computer hardware and
software vendors.

Simple but powerful:

• Establish a simple and limited set of directives for programming shared
memory machines.

• Significant parallelism can be implemented by using just 3 or 4 directives.

• This goal is becoming less true with each new release, unfortunately.

Goals of OpenMP

Ease of use:

• Provide the capability to parallelize a serial program incrementally.

• Provide the ability to implement both coarse-grained and fine-grained
parallelism.

Portability:

• The API is specified for C/C++ and Fortran.

• Public forum for API and membership

• Most major platforms have been implemented, including Unix/Linux
and Windows.

Goals of OpenMP

• OpenMP website https://openmp.org

• Wikipedia https://en.wikipedia.org/wiki/OpenMP

• LLNL tutorial https://hpc-tutorials.llnl.gov/
openmp

• Intel https://www.intel.com/content/dam/www/
public/apac/xa/en/pdfs/ssg/
Programming_with_OpenMP-Linux.pdf

Reference material

https://www.openmp.org/
uncategorized/openmp-timeline/

8 88

77
pages

55
pages

76
pages

116
pages

100
pages

242
pages

317
pages

346
pages

538
pages

Kuck and Associates, Inc. (KAI) | SGI | Cray | IBM | High Performance Fortran (HPF) | Parallel Computing Forum (PCF)

C/C++

Uni!ed

Fortran

TaskingLoop Parallelization Heterogeneity

Vendors provide similar but di!erent solutions for loop parallelism, causing portability and maintenance problems.

OpenMP ARB Membership Evolution Permanent ARB Auxiliary ARB Members OpenMP Google Scholar Hits

cOMPunity, the group
of OpenMP users, is

formed, and organizes
workshops on OpenMP in

North America, Europe,
and Asia.

2.0

The OpenMP ARB reaches
15 members of which 5

are supercomputing
centers. This mixture of
vendors and users is a

trademark of OpenMP’s
cooperative style of

operation.

OpenMP releases its
"rst Technical Report

that outlines how
accelerator and

coprocessor devices
will be handled.

OpenMP gears toward
version 4.1 and 5.0.

Topics under
discussion include
more support for
heterogeneous

systems, improvements
to the tasking model,

support for
transactional memory,

data a#nity, and
interoperability with
other programming

models.
Minor

clari"cations.
1.1

Begin discussions
about adding task

parallelism to OpenMP.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Merger of
Fortran and C/C++

speci"cations begins.

2.0

In spring 7 vendors,
Intel, and DOE agree on
the spelling of parallel

loop and form the
OpenMP ARB. By

October, version 1.0
of the OpenMP

speci"cation for Fortran
is released.

1.0

First hybrid
applications with

MPI* and OpenMP
appear.

1.0

Uni"ed C/C++ and
Fortran: Bigger than both
individual speci"cations

combined. The "rst
International Workshop

on OpenMP is held. It
becomes a major forum
for users to interact with

vendors.

2.5

Incorporates
task parallelism—a hard

problem as OpenMP
struggles to maintain

its thread-based nature,
while accommodating

the dynamic nature
of tasking.

3.0

Supports min./max.
reductions in C/C++

3.1

Supports accelerator/
coprocessor devices,

SIMD parallelism, thread
a#nity, and more.
Expands OpenMP

beyond its traditional
boundaries.

4.0

2526
221917171515131313

11111111

36 110 293 477 698 1020 1350 1330 1370 1600 1880 2320 3100 4100 5370 6010 6470

1996

History of
OpenMP

https://www.openmp.org/uncategorized/openmp-timeline/
https://www.openmp.org/uncategorized/openmp-timeline/

Let’s take a simple piece of code to get started:

Hello World example

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = std::sqrt(float(i));

 }

Demo: omp_hello_world.ipynb

• Assume you have multiple cores that can do
computation in parallel.

• The for loop can be split across the cores, and each core
can compute a small chunk of the iterations.

How can we parallelize this code?

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = std::sqrt(float(i));

 }

How can we parallelize this code?

 i = 0 i = n-1

core 0 core 1 core 2 core 3

We can distribute the computation across the
different cores using OpenMP.

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = std::sqrt(float(i));

 }

Let’s parallelize the first loop that calculates x[i] and y[i].

OpenMP code

 const int num_threads = 4;

 omp_set_num_threads(num_threads);

#pragma omp parallel for

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = std::sqrt(float(i));

 core[i] = omp_get_thread_num();

 }

 for (int i = 0; i < n; ++i)

 printf("Iteration %d was computed by thread %d\n", i, core[i]);

Output

Writing HPC code for scientific applications is not easy.

Thinking in parallel is much more complicated than thinking
sequentially and is error-prone.

An important strategy to find errors is to use unit testing:

• Write a small piece of code in a function

• Immediately test that the function works as expected

Unit testing

An excellent library for unit testing is GoogleTest.

It provides a simple infrastructure to write and manage tests.

Let’s learn how it works and how to use it.

GoogleTest

Function to initialize a vector:

Example of test

void init_i() {

 for (int i = 0; i < n; ++i) x[i] = i;

}

Demo: googletest.ipynb

• Use the macro TEST

• Use testing macros like ASSERT_EQ.

• Many additional macros and functions available in the library.

How to write a unit test

TEST(demoTest, init) {

 init_i();

 for (int i = 0; i < n; ++i) ASSERT_EQ(x[i], float(i));

}

• Calculations on a computer are not exact.

• Each operation generates a small roundoff error.

• The approximate number of accurate digits depends on
the precision of the floating point format.

Beware of roundoff errors

Single precision Double precision

~ 7.2 ~ 15.9

This test does not suffer
from roundoff errors.

“Exact” test

void init_1() {

 for (int i = 0; i < n; ++i) x[i] = 1;

}

void sum_x() {

 sum = 0;

 for (int i = 0; i < n; ++i) sum += x[i];

}

TEST(demoTest, sum) {

 init_1();

 sum_x();

 ASSERT_EQ(sum, float(n));

}

Roundoff errors are equal to: 0.000042; tolerance threshold:
0.001192.

With larger numbers, roundoff errors start appearing
void init_i() {

 for (int i = 0; i < n; ++i) x[i] = i;

}

void sum_x() {

 sum = 0;

 for (int i = 0; i < n; ++i) sum += x[i];

}

TEST(demoTest, sum_i) {

 init_i();

 sum_x();

 const float expd = float(n * (n - 1) / 2.);

 ASSERT_NEAR(sum, expd, n * expd * mach_eps);

 printf("Roundoff errors are equal to: %9.6f; tolerance threshold: %9.6f.\n",

 abs((sum - expd) / expd), n * mach_eps);

}

Determining whether a calculation is “correct” can be difficult.

Is the difference due to a coding error, or is it a roundoff error?

Is my calculation accurate?

• Unit testing is one of the many methods you need to learn
to be able to write correct code for complex applications.

• Additional documentation at:

https://google.github.io/googletest/

Unit testing and debugging

https://google.github.io/googletest/

Let’s test our
OpenMP Hello World!

TEST(ompTest, omp_loop) {

#pragma omp parallel for

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = i * i;

 }

 for (int i = 0; i < n; ++i) {

 ASSERT_EQ(x[i], i);

 ASSERT_EQ(y[i], i * i);

 }

#pragma omp parallel for

 for (int i = 0; i < n; ++i) {

 z[i] = x[i] + y[i];

 }

 for (int i = 0; i < n; ++i) {

 ASSERT_EQ(z[i], (float)(i + i * i));

 }

}

Demo: omp_lab.ipynb

• OpenMP is a vast topic with a lot of additional
functionalities.

• We will only review some of the main features.

• An important one is the reduction operator.

More on OpenMP

Consider the following code:

 float sum = 0;

 for (int i = 0; i < n; ++i) {

 sum += x[i];

 }

Reduction

 sum += x[i];

If multiple cores attempt to update the variable sum at the
same time, the result becomes undetermined.

This will lead to an erroneous result. This is a bug!

Race condition

We need to tell the compiler that sum should be computed
differently.

Adding numbers is called a reduction operation.

We have to use the OpenMP reduction clause to get the
correct code.

OpenMP reduction

• The final result will now be correct.

• Other reduction operators: -, *, max, min

• + logical and boolean operators

Reduction clause

 float sum = 0;

#pragma omp parallel for reduction(+ : sum)

 for (int i = 0; i < n; ++i) {

 sum += x[i];

 }

• Loop scheduling is critical for performance.

• OpenMP has extensive functionalities to improve
performance of for loop executions.

• This can be achieved by specifying different loop
scheduling policies.

How should we schedule loops?

Example of static policy

#pragma omp parallel for schedule(static, 32)

 for (int i = 0; i < n; ++i) {

 z[i] = x[i] + y[i];

 }

What does this do?

schedule(static, 1)

#pragma omp parallel for schedule(static, 1)

thread 0

thread 1

thread 2

thread 3

0

1

2

3

4

5

6

7

8

9

10

11

schedule(static, 2)

#pragma omp parallel for schedule(static, 2)

thread 0

thread 1

thread 2

thread 3

0

2

4

6

1

3

5

7

8

9

10

11

Example

#pragma omp parallel for

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = i * i;

 }

#pragma omp parallel for schedule(static, 32)

 for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];

 for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], (float)(i+i*i));

schedule(dynamic, 1)

#pragma omp parallel for schedule(dynamic, 1)

thread 0

thread 1

thread 2

thread 3

0

1

2

3

4

5

6

7

8

9

10

11

Example

#pragma omp parallel for schedule(dynamic, 32)

 for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];

 for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], (float)(i+i*i));

chunk size

schedule(guided)
#pragma omp parallel for schedule(guided)

thread 0

thread 1

thread 2

thread 3

• Large iteration chunks are assigned
initially.

• As the calculation progresses,
smaller chunks are assigned.

• In most cases, this allows all cores to
finish their computation
simultaneously, which is optimal.

many iterations fewer iterations

• What happens if the number of iterations is small?

• Few iterations are assigned to each core.

• This may lead to a significant load imbalance, i.e., one of the cores finishes
much later than the others.

Nested loops

thread 0

thread 1

thread 2

thread 3

• In general, it is better to parallelize loops with many
iterations.

• This makes it easier for the scheduler to assign work to the
cores so that they all finish around the same time.

• If your loop does not have enough iterations, you have the
option of “merging” it with the following nested loop.

• This is called loop collapse in OpenMP.

Balancing the workload

Example of loop collapse

#pragma omp parallel for collapse(2)

 for (int i = 0; i < n0; ++i) {

 for (int j = 0; j < n0; ++j) {

 x[i * n0 + j] = i * n0 + j;

 y[i * n0 + j] = i - j;

 }

 }

 for (int i = 0; i < n; ++i) ASSERT_EQ(x[i], float(i));

 for (int i = 0; i < n0; ++i)

 for (int j = 0; j < n0; ++j) ASSERT_EQ(y[i * n0 + j], float(i - j));

Example of loop collapse

#pragma omp parallel for collapse(2)

 for (int i = 0; i < n0; ++i)

 for (int j = 0; j < n0; ++j) z[i * n0 + j] = x[i * n0 + j] + y[i * n0 + j];

 for (int i = 0; i < n0; ++i)

 for (int j = 0; j < n0; ++j) ASSERT_EQ(z[i * n0 + j], float(i * (n0 + 1)));

• atomic

• critical

• single

• task

• barrier, taskwait

• …

• Reference guides

Many other OpenMP concepts

https://www.openmp.org/resources/refguides/

Part 3

Programming GPU processors using OpenACC

GPUs!

GPUs from NVIDIA and AMD boast significant single and double
precision performance due to a huge number of cores.

These are specialized processors that can deliver high-
performance but only on certain types of calculations:

• Massive amount of parallel operations

• Must be mainly data parallel

• Requires offloading large chunks of computations to the GPU
to amortize the cost of transferring data to/from the GPU.

GPU for scientific computing

Performance trends

Karl Rupp

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

• GPUs initially focused on 3D graphics = computing the color
of each pixel on the screen based on a 3D scene model.

• Featured example: ray tracing global illumination (RTXGI)

History

General purpose GPU computing:

• Extension to general scientific
computations.

• Solving equations on a grid is similar to
rendering: perform the same regular
calculations on a large dataset.

GPGPU

Recent advances in GPU computing target deep learning.

1. Linear algebra: matrix-matrix multiplications.

2. Mixed precision arithmetic: represents floating point
numbers using different numbers of binary bits.

Deep learning

Tensor Cores

H100 FP16 Tensor Core has 3x throughput compared to A100 FP16 Tensor Core

• Dense linear algebra with a massive amount of flops

• Partial differential equation solvers: finite-difference and
regular grid calculations

• Deep neural networks

Less suitable for:

• Irregular calculations with branching and uneven workloads

• Long series of sequential operations

GPUs are great for

What does a GPU processor look
like?

Schematic organization

The GPU devotes more transistors to data processing.

GH100 (Hopper) with 144 Streaming Multiprocessors (SM)

NVLink allows GPU processors to communicate without using the CPU.

GH100 Streaming
Multiprocessor (SM)

• Special Functions Units (SFUs):
execute transcendental instructions
such as sin, cosine, reciprocal, and
square root.

• Dispatch Unit: instruction dispatch

How to program GPUs

Introduction

• GPUs are different from conventional processors.

• They only work as co-processors.

• This means you need a host processor (e.g., Intel Core/
Xeon).

GPU processors are co-processors

• Your program runs on the host and uses an application
programming interface (API) to move data back and forth
to the GPU and run programs on the GPU.

• You cannot log on to the GPU directly or run an OS on the
GPU.

Allocate memory on
GPU

CPU GPU

Allocation

Copy data

Launch kernel

Kernel execution

Copy data

Free memory on
GPU

Asynchronous

Host to Device

Device to Host

• OpenMP can be used to program GPUs, but this is a
recent, less robust addition to the language.

• Support is currently somewhat limited.

• We will cover instead OpenACC, which was designed from
the beginning to program GPUs.

• OpenACC = OpenMP for accelerator processor.

OpenACC

Vendor agnostic:

• OpenCL

• Numba

Vendor specific:

• CUDA

• HIP

Other programming solutions

• OpenCL: Open Computing Language

• Framework for writing programs that execute
across heterogeneous platforms, e.g., GPUs, digital
signal processors (DSPs)

• OpenCL provides a standard interface for parallel
computing using task- and data-based parallelism.

• OpenCL is an open standard maintained by
the non-profit technology consortium Khronos
Group.

OpenCL

Python has extensions that allow generating GPU code.

Example: Numba

Python

Many uses.

Just-in-time compilation of Python code for performance:

Numba

from numba import jit

import random

@jit(nopython=True)

def monte_carlo_pi(nsamples):

 acc = 0

 for i in range(nsamples):

 x = random.random()

 y = random.random()

 if (x ** 2 + y ** 2) < 1.0:

 acc += 1

 return 4.0 * acc / nsamples

Example of parallel for loop in Numba:

Numba multi-threaded programming

@jit(nopython=True, parallel=True)

def simulator(out):

 # iterate loop in parallel

 for i in prange(out.shape[0]):

 out[i] = run_sim()

Numba for NVIDIA GPUs (CUDA)

from numba import cuda, float32

@cuda.jit

def matmul(A, B, C):

 i, j = cuda.grid(2)

 if i < C.shape[0] and j < C.shape[1]:

 tmp = 0.

 for k in range(A.shape[1]):

 tmp += A[i, k] * B[k, j]

 C[i, j] = tmp

Numba for AMD ROC GPUs
from numba import roc, float32

@roc.jit

def matmul(A, B, C):

 i = roc.get_global_id(0)

 j = roc.get_global_id(1)

 if i < C.shape[0] and j < C.shape[1]:

 tmp = 0.

 for k in range(A.shape[1]):

 tmp += A[i, k] * B[k, j]

 C[i, j] = tmp

Vendor specific solutions

• Currently, the standard for writing GPU code.

• It only targets NVIDIA GPUs.

• Very mature and robust.

• But complex to use and requires significant code changes

• Initial release: June 23, 2007 (14 years ago)

NVIDIA CUDA

• AMD has a proprietary language for
programming its GPUs called HIP.

• HIP can generate code for AMD and NVIDIA
GPUs.

• HIP is close to CUDA.

• HIP is designed to allow developers to convert
CUDA code easily.

• Part of the open-source ROCm stack.

AMD GPUs

Let’s get started with OpenACC

First, you will need a GPU!

Go to: Notebook settings

Then select GPU under Hardware
accelerator

GPU access

Demo: openacc_lab.ipynb

You should be able to test which GPU you have access to:

Hardware

Demo: openacc_lab.ipynb

You will need to install the NVIDIA HPC SDK, which contains
the OpenACC compiler and can generate code for NVIDIA
GPUs.

Run the cells at the beginning of the notebook to install:

1. install_hpc.sh installs the NVIDIA HPC SDK

2. install_gtest.sh installs Google Test

The installation takes a few minutes.

Installation

 const int n = 32000000;

 float* x = new float[n];

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) x[i] = i;

 for (int i = 0; i < n; ++i) ASSERT_EQ(x[i], float(i));

Very similar to OpenMP (at least in appearance)

Our first GPU parallel loop

Offloads to GPU

Demo: openacc_lab.ipynb

What are these messages saying?

Let’s focus on gang/vector first.

Let’s see what the compiler says

This is less important for us.

These variables are used because they reflect the way the
hardware is organized.

Thread: smallest execution unit in the program.

Gang, worker, vector

Vector: a group of threads that can coordinate and execute
“together.”

Worker: a group of vectors that can coordinate and execute
“together;” this is a less important concept.

Gang: a group of workers/vectors.

Gang, worker, vector

For optimization purposes, the sizes of a vector, worker, or
gang can be specified.

This is a more advanced optimization.

Gang, worker, vector

#pragma acc parallel loop num_gangs(40) num_workers(32) vector_length(32)

 for (int i = 0; i < n; ++i) x[i] = i;

• The memory of the CPU and the GPU are physically
separate.

• So data need to be transferred between the two memories
before a calculation can be run on the GPU.

• In this case, the compiler detected that x was initialized on
the GPU.

• It automatically generated instructions to copy the result
from the GPU to the CPU memory.

CPU and GPU memories

Explicit data transfer clauses
#pragma acc parallel loop copyout(x[:n])

 for (int i = 0; i < n; ++i) x[i] = i;

Clause Description

copy create space, initialize by copying to the device, copy back to host
at the end, release device memory

copyin same but without copy back to host

copyout same but without initial copy to the device

create create space at the beginning, release at the end

present no action taken

x[:n]

• copy(array[starting_index:length])

• The first number is the start index of the array.

• The second number is how much data is to be
transferred.

Array shaping

#pragma acc parallel loop copyout(x[:n])

Demo: openacc_lab.ipynb

• (x,y) initialization

• Vector z computation

Data locality

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = i * i;

 }

 for (int i = 0; i < n; ++i) {

 ASSERT_EQ(x[i], float(i));

 ASSERT_EQ(y[i], float(i * i));

 }

 for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];

 for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], float(i * (i + 1)));

Demo: openacc_lab.ipynb

By default, the code would:

• Copy (x,y) to the device.

• Copy them back to the host for testing.

• Copy (x,y) again to the device.

• Copy z to the host.

The copies of (x,y) can be optimized.

Data transfer

enter data create

Creates the data on the GPU and leaves it there until instructed to
delete the data.

acc enter data

#pragma acc enter data create(x[:n], y[:n])

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = i * i;

 }

• Because we used enter data create, the data is not
automatically copied back to the host.

• We need to add update self to copy the data from device to
host.

• Also: #pragma acc update device()

acc update self
#pragma acc update self(x[:n], y[:n])

 for (int i = 0; i < n; ++i) {

 ASSERT_EQ(x[i], float(i));

 ASSERT_EQ(y[i], float(i * i));

 }

This deletes the data on the GPU and frees resources.

Each enter much be matched with an exit.

acc exit data

#pragma acc exit data delete(x[:n], y[:n])

Full code
#pragma acc enter data create(x[:n], y[:n])

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) {

 x[i] = i;

 y[i] = i * i;

 }

#pragma acc update self(x[:n], y[:n])

 for (int i = 0; i < n; ++i) {

 ASSERT_EQ(x[i], float(i));

 ASSERT_EQ(y[i], float(i * i));

 }

#pragma acc parallel loop copyout(z[:n])

 for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];

#pragma acc exit data delete (x[:n], y[:n])

 for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], float(i * (i + 1)));

As in OpenMP, we need to use a special construct when we
have a reduction.

Otherwise, the different cores will attempt to access and
modify sum at the same time, which is a bug.

Reduction

sum += x[i];

Note the data create to avoid unnecessary copies.

Reduction example

 float sum = 0;

#pragma acc data create(x[:n])

 {

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) x[i] = 1;

#pragma acc parallel loop reduction(+ : sum)

 for (int i = 0; i < n; ++i) sum += x[i];

 }

 for (int i = 0; i < n; ++i) ASSERT_EQ(sum, float(n));

• GPU are massively parallel processors.

• They can contain thousands of cores.

• Example: GeForce RTX 3090 Ti: 10,752 cores.

• So we need to generate as much concurrency (parallelism)
in our code.

• Loop fusion is critical for performance when the number
of iterations is not large enough.

collapse

• i and j loops will be merged and executed in parallel.

• Without collapse, only the i loop is parallelized while the j loop is
executed sequentially.

• collapse allows generating n*n parallel threads instead of just n.

• This can improve performance significantly.

for loop with collapse
#pragma acc parallel loop collapse(2)

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < n; ++j) {

 z[i * n + j] = x[i * n + j] + y[i * n + j];

 }

 }

Complete example with collapse
#pragma acc enter data create(x[:n * n], y[:n * n])

#pragma acc parallel loop collapse(2)

 for (int i = 0; i < n; ++i)

 for (int j = 0; j < n; ++j) {

 x[i * n + j] = i * n + j;

 y[i * n + j] = i - j;

 }

#pragma acc update self(x[:n * n], y[:n * n])

 for (int i = 0; i < n * n; ++i) ASSERT_EQ(x[i], float(i));

 for (int i = 0; i < n; ++i)

 for (int j = 0; j < n; ++j) ASSERT_EQ(y[i * n + j], float(i - j));

#pragma acc parallel loop collapse(2) copyout(z[:n * n])

 for (int i = 0; i < n; ++i)

 for (int j = 0; j < n; ++j) z[i * n + j] = x[i * n + j] + y[i * n + j];

#pragma acc exit data delete(x[:n * n], y[:n * n])

 for (int i = 0; i < n; ++i)

 for (int j = 0; j < n; ++j) ASSERT_EQ(z[i * n + j], float(i * (n + 1)));

Let’s look at a more complex real-life application.

We want to model the gravitational interactions between n
bodies with mass.

This is similar to modeling the motions of the planets around
the sun in the solar system.

n body problem

We start from .

The acceleration is given by the gravitational force:

	 	

Fi = mi ai

Fi = mi ∑
j≠i

mj
rj − ri

∥rj − ri∥3
2

Gravitational force

	 	

Equations of motion:

	 	

Fi = mi ∑
j≠i

mj
rj − ri

∥rj − ri∥3
2

d2ri

dt2
= ∑

j≠i

mj
rj − ri

∥rj − ri∥3
2

Equations of motion

• We numerically solve these equations using the velocity
Verlet time integrator.

• It’s not very accurate, but it remains stable over many
time steps.

• This is a two-step method.

Time integrator

• Step 1: advance the velocity

	 	 	

• Step 2: advance the position

	 	 	

• Repeat

vn+1
i = vn

i + Δt ∑
j≠i

mj
rj − ri

∥rj − ri∥3
2 n

rn+1
i = rn

i + Δt vn+1
i

Velocity Verlet

Force computation

 for (int i = 0; i < n; i++) {

 real fx, fy, fz; fx = fy = fz = 0;

 for (int j = 0; j < n; j++) {

 real3 ff = forceComputation(pos[i].x, pos[i].y, pos[i].z,

 pos[j].x, pos[j].y, pos[j].z, pos[j].w);

 fx += ff.x;

 fy += ff.y;

 fz += ff.z;

 }

 force[i].x = fx;

 force[i].y = fy;

 force[i].z = fz;

 }

Demo: nbody.ipynb

Time step

 for (int i = 0; i < n; i++) {

 // acceleration = force / mass;

 // new velocity = old velocity + acceleration * deltaTime

 vel[i].x += force[i].x * dt;

 vel[i].y += force[i].y * dt;

 vel[i].z += force[i].z * dt;

 // new position = old position + velocity * deltaTime

 pos[i].x += vel[i].x * dt;

 pos[i].y += vel[i].y * dt;

 pos[i].z += vel[i].z * dt;

 }

Demo: nbody.ipynb

Time integration

 for (int i = 0; i < iterations; i++) {

 seqIntegrate(pos, vel, force, dt, n);

 }

Demo: nbody.ipynb

• Optimize the movement of data by reducing memory
copies between host and device.

• Only done before the iterations start and after they are
complete.

Parallel time stepping loop

#pragma acc data copy(pos[:n], vel[:n]) copyout(force[:n])

 for (int i = 0; i < iterations; i++) {

 integrate(pos, vel, force, dt, n);

 }

Nested parallel loops with reduction
#pragma acc parallel loop

 for (int i = 0; i < n; i++) {

 real fx, fy, fz;

 fx = fy = fz = 0;

#pragma acc loop reduction(+ : fx, fy, fz)

 for (int j = 0; j < n; j++) {

 real3 ff = forceComputation(pos[i].x, pos[i].y, pos[i].z, pos[j].x,

 pos[j].y, pos[j].z, pos[j].w);

 fx += ff.x;

 fy += ff.y;

 fz += ff.z;

 }

 force[i].x = fx;

 force[i].y = fy;

 force[i].z = fz;

 }

Demo: nbody.ipynb

Parallel time step

#pragma acc parallel loop

 for (int i = 0; i < n; i++) {

 vel[i].x += force[i].x * dt;

 vel[i].y += force[i].y * dt;

 vel[i].z += force[i].z * dt;

 pos[i].x += vel[i].x * dt;

 pos[i].y += vel[i].y * dt;

 pos[i].z += vel[i].z * dt;

 }

Demo: nbody.ipynb

Performance results

We only use a single CPU
thread on Google compute.

Accuracy

Roundoff errors between CPU
and GPU in single precision

We hope you enjoyed this workshop!

