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Logistics of workshop

* Schedule: Thursday and Friday, 1to 4 PM
* GitHub page:

https://ericdarve.github.io/icme-hpc-summer-2022/

* Shared Google notebooks:

https://drive.google.com/drive/folders/
lpwvw HvZMtQgZ1l00nl95]DOUt-KPd xy



https://ericdarve.github.io/icme-hpc-summer-2022/
https://drive.google.com/drive/folders/1pwvw_HvZMtQqZl00nl95jDOUt-KPd_xy
https://drive.google.com/drive/folders/1pwvw_HvZMtQqZl00nl95jDOUt-KPd_xy
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Content of workshop

1. Introduction to High-Performance computing; history of
HPC and current trends

2. How to program a multicore processor using OpenMP?
This 1s the basis of HPC programming and an easy entry
point.

3. GPU processors provide the backbone of HPC platforms
for number crunching. We will cover OpenACC to write
HPC programs for GPU processors.
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Part 1
Introduction to HPC
History of HPC computers



Stanford University

What is high-performance computing?

* Standard computers perform tasks sequentially, that is,
transaction-by-transaction.

* This means that the next transaction, or job, happens only
when the computer completes the previous one.

* |n contrast, HPC uses many resources such as processors
to complete many jobs simultaneously.
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Supercomputers

* Forthe most part, HPC occurs on supercomputers.

* These powerful systems help companies solve problems
that could otherwise be insurmountable.

* T[hese problems, or tasks, require processors that can
carry out instructions faster than standard computers.

* Thisis achieved by running many processors in parallel
to obtain answers within a practical duration.
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HPC hardware

* HPC jobs require fast disks and high-
speed memory.

* HPC systems include computing and
data-intensive servers with powerful
CPUs that can be vertically stacked.

* HPC systems often have powerful
graphics processing units (GPUs)
that can run general-purpose
computations.

€ Stanford

University

NVIDIA HPC system
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HPC system designs

What is parallel computing?

Parallel computing HPC systems involve hundreds of
processors, cach running calculation payloads
simultaneously.
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HPC system designs

What is cluster computing?

* Cluster computingis a type of parallel HPC
system consisting of a collection of computers
working together as an integrated resource.

* Clusters can accommodate multiple applications
and resources. They are managed by policy-
based scheduling and can handle a dynamic
workload consisting of large numbers of jobs.

€ Stanford

University

Stanford XStream compute cluster
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HPC system designs

What are grid and distributed computing?

Grid and distributed computing HPC systems
connect the processing power of multiple
computers within a network. The network can
be a grid at a single location or distributed
across a wide area in different places,
linking network, compute, data, and
Instrument resources.

Main vendors: Amazon Web Services

(AWS), Microsoft Azure, and Google
Cloud Platform

Cloud Infrastructure Services Market

111111

(laaS, PaaS, Hosted Private Cloud)

111111

222222
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amazon 339

Source: Synergy Research Group

https://www.srgresearch.com/

Amazon data center
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Applications of HPC

Some of the key applications include:

Big data: massive multi-dimensional datasets
 Data analytics
* Extreme performance database

° Machine learning
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Automotive and aerospace
CFD-aerodynamic modeling
FEA-impact and structural strength analysis

CAD and CAM

Banking, financial services markets and

insurance
Monte Carlo simulations
Risk analysis
Fraud detection

Electronics design automation (EDA)
Chip design and optimization
Circuit simulation and verification
Manufacturing optimization

Film, media and gaming

Rendering

Applications!

Computer-aided graphics

Molecular modeling and biology simulation
Computer-generated images (CGl)

Protein docking
Transcoding and encoding

Oil and gas

Real-time image analysis and processing

Seismic data processing

Government and defense

Reservoir simulation and modeling
Intelligence agency

Geospatial analytics
Fraud analysis

Terrain and topology mapping
Climate modeling

CFD-aerodynamic modeling
Weather forecasting

Wind simulation
Energy

Retail

Nuclear stewardship

Inventory analysis
Exploration

Logistics and supply chain optimization

Life sciences

Sentiment analysis
Genomic processing and sequencing

Marketing offers
Pharmaceutical design
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A short history of HPC

The beginnings:

 HPC market: scientific discoveries; Fortran (Formula
Translation)

* Cray Research: supercomputers; focus: floating-point operations

* 1960’s: specialized and expensive supercomputers; cold war,
strategic necessity

* 1980’s: number of processors goes up. Multiple processors
(sometimes hundreds) are connected through a network.
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A short history of HPC

Vendors turn to commodity markets where processors
are sold in large quantities.

Monolithic supercomputer systems splinter as many
commodity components can be purchased from
competing vendors.

The economic barrier of entry is lowered by at least a
factor of ten.
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Beowulf clusters
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* Operating system: UNIX.

* 1981, Linus Torvalds released a
freely available version of Linux.

* Message Passing Interface (MPI)

library.
Borg, a 52-node Beowulf cluster used by

the McGill University pulsar group to search for
pulsations from binary pulsars



https://en.wikipedia.org/wiki/Pulsar
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Beowulf clusters

* The performance of “Beowulf Clusters” (named for the
NASA project that developed these systems) comes close
to that of supercomputers of the day: commodity-grade
computers + free and open source software + MPI.

* High-performance interconnects are developed; the
market settles on InfiniBand (Mellanox)

* Name "supercomputer” replaced by “HPC systems.”
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The multi and many core explosion

Three issues limit an increase In clock speed:

1.

Memory Speed: the gap between processor and
memory speed continued to grow

2. Instruction Level Parallelism: the increasing
difficulty of finding enough parallelism in a single
Instruction stream

Power Wall: increased processor frequency causes
an Increase In operating temperature
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The multi and many core explosion

* The era of multi-core: dual-core processors; more cores
added to each new generation of processors

* Commodity Graphics Processing Units (GPUs) that
contain large numbers (hundreds to thousands) of small,
efficient cores.
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Exascale computing and co-design

“On the Role of Co-design in High Performance Computing,” R. F. Barrett et al.

The co-design strategy Is based on developing partnerships with computer vendors
and application scientists and engaging them in a highly collaborative and iterative
design process well before a given system is available for commercial use. The process
IS bullt around identifying leading edge, high-impact scientific applications and providing
concrete optimization targets rather than focusing on speeds and feeds (FLOPs and
bandwidth) and percent of peak. Rather than asking “what kind of scientific
applications can run on an Exascale system” after it arrives, this application-
driven design process instead asks “what kind of system should be built to meet
the needs of the most important science problems.” This leverages eep
understanding of specific application requirements and a broad-based computational
sclence portfolio.
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HPC history in pictures
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Accelerator/Co-Processor Performance Share

@ NVIDIA Tesla V100
@ NVIDIA A100
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@ NVIDIA Tesla P100
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@ Matrix-2000
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Rmax (GFlops)

243,448,930
226,001,000
91,975,490
49,751,640
81,312,000
30,133,600
269,439,000
8,824,090
13,806,000
61,444,500
2,566,000
2,478,000
3,126,240
8,125,000

LINPACK achieved Theoretical peak

Rpeak (GFlops)

475,572,809
324,135,290
182,486,069
73,680,456
115,202,938
47,814,630
362,564,722
14,612,320
18,688,410
100,678,664
4,701,000
4,946,790
5,610,481
12,127,069

Cores
5,059,976
2,125,952
2,059,208
1,005,472

869,192
315,812
4,408,096
201,328
124,160
4,981,760
186,368
64,384
152,692
135,828
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Interconnect Family Performance Share

Interconnect Family

Gigabit Ethernet

Infiniband

Omnipath

Custom Interconnect

Proprietary Network
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6
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@ Gigabit Ethernet
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Rmax (GFlops)
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1,200,636,818
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491,906,300

Rpeak (GFlops)
1,210,167,243
1,832,049,310

281,314,234
483,020,993
597,474,433

Cores
19,827,104
22,511,764
4,361,016
21,616,076
8,609,792



Cores per Socket Performance Share
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Performance development

Performance Development
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But before diving in further...
Let’s get to know each other
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Instructor

* Eric Darve, ME, ICME, darve@stanford.edu

* Numerical linear algebra, machine learning for mechanics
and engineering, parallel computing
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Teaching Assistant

* Chenzhuo Zhu

* |am a graduating Ph.D. student at Stanford EE,
advised by Prof. Bill Dally. | am interested in
computer architecture and memory system design o 0 EBE B
for data center applications. s 7

* | grew up in Beljing, China. | received my B.S degree
from Tsinghua University before coming to Stanford.

* | have worked as a teaching assistant for CME
courses on scientific and parallel programming.

* |am also a snowboarder and a private pilot.
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What this class is about

We will get an overview of parallel programming using two
very accessible but powerful techniques:

1. Shared memory multicore processors using OpenMP.

2. GPU computing (NVIDIA + AMD) using OpenACC.
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Thinking parallel

Parallel programs often look very different from
sequential programs.

ololelelolele Ny
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How would you count the number of candies of each color?
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The initial step of counting candies goes fast.

But after that, the following steps of reduction become problematic.

Can we use a single core to calculate the final sum for each candy?
* Thisis inefficient

How can we compute the final reduction efficiently and in parallel?
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Efficient algorithm requires a tree reduction
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Counting candies in parallel is more
complicated than we initially thought.
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Part 2

Programming multicore processors using OpenMP
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Let’s talk about shared memory computing.
This is the simplest method.

It applies to your laptop, desktop computer, or even your
phone.
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Shared memory processor architecture

Processing
elements

Cache

Global
memory

M1 M2

Interconnection network Network
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Shared memory processor architecture

Schematic
* Several processors or cores
* A shared physical memory (global memory)

* Aninterconnection network to connect the processors
with the memory
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Multicore performance

Memory is key to developing high-performance multicore
applications

* More cores do not necessarily mean faster execution.

Memory traffic and time to access memory are often
more critical than flops.

* Memory is hierarchical and complex. jacK
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Our teaching platform

* Google Colab

* Allows running CPU and GPU sample codes in the
cloud with no setup required!

* Demo: colab_demo.1ipynb
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OpenMP and OpenACC

In this workshop, we will focus on two solutions:
* OpenMP to program multicore processors

* OpenACC to program GPUs
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OpenMP makes scientific multithreaded programming very easy!

* OpenMP simplifies multicore programming significantly.

* In many cases, adding one line of code is sufficient to
make It run in parallel.

* OpenMP is the standard approach in scientific computing
for multicore processors.
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Goals of OpenMP

Standardization:

* Provide a standard among a variety of shared memory architectures/
platforms.

* Jointly defined and endorsed by a group of major computer hardware and
software vendors.

Simple but powerful:

* Establish a simple and limited set of directives for programming shared
memory machines.

* Significant parallelism can be implemented by using just 3 or 4 directives.

* This goal is becoming less true with each new release, unfortunately.
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Goals of OpenMP

Ease of use:
* Provide the capability to parallelize a serial program incrementally.

* Provide the ability to implement both coarse-grained and fine-grained
parallelism.

Portability:
* The APl is specified for C/C++ and Fortran.
* Public forum for APl and membership

* Most major platforms have been implemented, including Unix/Linux
and Windows.
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Reference material

* OpenMP website https://openmp.org
* Wikipediahttps://en.wikipedia.org/wiki/OpenMP

 LLNL tutorial https://hpc-tutorials.llnl.gov/
openmp

* Intel https://www.intel.com/content/dam/www/
public/apac/xa/en/pdfs/ssqg/
Programming with OpenMP-Linux.pdf



Vendors provide similar but different solutions for loop parallelism, causing portability and maintenance problems.
Kuck and Associates, Inc. (KAl) | SGI | Cray | IBM | High Performance Fortran (HPF) | Parallel Computing Forum (PCF)
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Hello World example

L et’s take a simple piece of code to get started:

for (int 1 = 0; 1 < n; ++1) {
X[1] 1;
v[I1] std::sqgrt(float(1));
’

Demo: omp_hello_world.ipynb
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How can we parallelize this code?

* Assume you have multiple cores that can do
computation in parallel.

* The forloop can be split across the cores, and each core
can compute a small chunk of the iterations.

for (int 1
X[1] 1;
v[1] std::sqgrt(float(1));

¥

O; 1 < n; ++1) {
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How can we parallelize this code?

core O

for (int 1 = 0; 1 < n; ++1) {

¥

Xx[1]
v[1i]

1,
std::sqgrt(float(1));

core 1

core 2 core 3

We can distribute the computation across the
different cores using OpenMP.
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OpenMP code

L et’s parallelize the first loop that calculates x[i] and yli].

const i1nt num_threads = 4;

omp_set_num_threads (num_threads);
#fpragma omp parallel for

for (int 1 = 0; 1 < n; ++1) {
x[1] = 1;
v[1] = std::sqgrt(float(1));
core[1] = omp_get_thread_num() ;
h
for (1nt 1 = 0; 1 < n; ++1)
printf("Iteration %d was computed by thread %d\n", 1, core[i]);
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Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

NOOUOESE, WNEOS

Output

was
was
was
was
was
was
was
was

computed
computed
computed
computed
computed
computed
computed
computed

thread
thread
thread
thread
thread
thread
thread
thread
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Unit testing

Writing HPC code for scientific applications is not easy.

Thinking in parallel is much more complicated than thinking
seguentially and 1s error-prone.

An important strategy to find errors Is to use unit testing:

* Write a small piece of code Iin a function

* Immediately test that the function works as expected
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GoogleTest

An excellent library for unit testing is GoogleTest.
It provides a simple infrastructure to write and manage tests.

| et’s learn how it works and how to use it.
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Example of test

Function to Initialize a vector:

volid 1nit_1() {
for (int 1 = 0; i < n; ++1) x[i] = 1i;

h

Demo: googletest.ipynb
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How to write a unit test

* Usethemacro TEST
* Use testing macros like ASSERT_EQ.

* Many additional macros and functions available in the library.

TEST(demoTest, 1nit) {

1nit_1();

for (1nt 1 = 0; 1 < n; ++1) ASSERT_EQ(x[1], float(1));
}
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Beware of roundoff errors

* Calculations on a computer are not exact.

 Each operation generates a small roundoff error.

* The approximate number of accurate digits depends on
the precision of the floating point format.

Single precision Double precision

~ 7.2 ~15.9
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“Exact” test

vold 1nit_1() {
for (1nt 1 = 0; 1 < n; ++1) x[1] = 1;
. }
This test does not suffer void sum_x() {

sum = 0;

from roundoff errors. for (int i = ©; i < n; ++i) sum += x[i]:

h
TEST(demoTest, sum) {

1n1t_1();
sum_x () ;
ASSERT_EQ(sum, float(n)):;

¥
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With larger numbers, roundoff errors start appearing

vold 1nit_1() {
for (int 1 = 0; i < n; ++i) x[i] = 1i:
h
vold sum_x() {
sum = 0;
for (int i = 0; i < n; ++1i) sum += x[1];
h
TEST(demoTest, sum_1) {
1n1t_1();
sum_x() ;
const float expd = float(n * (n - 1) / 2.);
ASSERT_NEAR(sum, expd, n * expd * mach_eps);
printf("Roundoff errors are equal to: %9.6f; tolerance threshold: %9.6f.\n",
abs((sum - expd) / expd), n * mach_eps);

¥

Roundoff errors are equal to: 0.000042; tolerance threshold:
0.001192.
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Is my calculation accurate?

Determining whether a calculation is “correct” can be difficult.

Is the difference due to a coding error, or is it a roundoff error?
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Unit testing and debugging

* Unit testing Is one of the many methods you need to learn
to be able to write correct code for complex applications.

 Additional documentation at:

https://google.github.io/googletest/



https://google.github.io/googletest/
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TEST (ompTest, omp_Lloop) {
pragma omp parallel for
for (int 1 O; 1 < n; ++1)
x[1] = 1;
y[i] = 1 * 1;
h
for (1nt 1 = 0; 1 < n; ++1)
ASSERT EQ(x[1], 1) ;
ASSERT_EQ(v[1], 1 * 1);
}
pragma omp parallel for
for (int 1 = 0; 1 < n; ++1)
, z[1] = x[1] + y[1];
for (int 1 = 0; 1 < n; ++1)
ASSERT_EQ(z[1], (float) (1
h

¥

Demo: omp_lab.ipynb

+ 1 * 1));

RUN

OK
RUN

OK
RUN

OK
RUN

OK

PASSED

Let’s test our
OpenMP Hello World!

Runn1ng ma1n() from googletest—-main/googletest/src/gtest_main.cc

Running 4 tests from 1 test suite.

] ompTest.
] ompTest.
] ompTest.
] ompTest.
] ompTest.
] ompTest.
] ompTest.
] 4 tests

from ompTest
omp_loop

] Global test environment set-up.
] 4 tests
] ompTest.

omp_loop (@ ms)

omp_reduction

omp_reduction (@ ms)

omp_schedule
omp_schedule
omp_collapse
omp_collapse
from ompTest

(0 ms)

(0 ms)
(1 ms total)

] Global test environment tear-down
4 tests from 1 test suite ran.
] 4 tests.

(1 ms total)
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More on OpenMP

* OpenMP is a vast topic with a lot of additional
functionalities.

* We will only review some of the main features.

* An important one iIs the reduction operator.
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Reduction

Consider the following code:

float sum = 0;
for (1nt 1 = 0; 1 < n; ++1) {
sum += x[1];

¥
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Race condition

sum += x[1];

If multiple cores attempt to update the variable sum at the
same time, the result becomes undetermined.

This will lead to an erroneous result. This is a bug!



Stanford University

OpenMP reduction

We need to tell the compiler that sum should be computed
differently.

Adding numbers is called a reduction operation.

We have to use the OpenMP reduction clause to get the
correct code.
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Reduction clause

float sum = 0;
#tpragma omp parallel for reduction(+ : sum)
for (1nt 1 = 0; 1 < n; ++1) {
sum += x[1];

¥

* The final result will now be correct.

* Otherreduction operators: -, *, max, min

* +logical and boolean operators
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How should we schedule loops?

* Loop scheduling is critical for performance.

* OpenMP has extensive functionalities to improve
performance of for loop executions.

* This can be achieved by specifying different loop
scheduling policies.
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Example of static policy

#tpraema omp parallel for schedule(static, 32)
for (int 1 = 0; 1 < n; ++1) {
z[1] = x[1] + yI[1];

¥
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What does this do?
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schedule(static, 1)

#tpraema omp parallel for schedule(static, 1)

thread O n n
thread 1 n
thread 2 a
thread 3
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schedule(static, 2)

#tpraema omp parallel for schedule(static, 2)

thread O n n
thread 1 n
thread 2
thread 3 a
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#pragma omp parallel for

for (1nt 1 = 0; 1 < n;
x[1] = 1;
y[i] = 1 * 1;

}
#pragma omp parallel for

for (1nt 1 = 0; 1 < n;

for (1nt 1 = 0; 1 < n;

++1) {

Example

schedule(static, 32)

++1) z[1]

x[1] + v[1];

++1) ASSERT_EQ(z[i], (float) (i+i*i));
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schedule(dynamic, 1)

#tpragma omp parallel for schedule(dynamic, 1)

thread O n a a
thread 1 a
thread 2
thread
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chunk size

#tpragma omp parallel for schedule(dynamic, 32)
for (int 1 = 0; 1 < n; ++1) z[1i] = x[1] + vI[i];

for (int 1 = 0; 1 < n; ++1) ASSERT_EQ(z[1], (float) (i+1*1));
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schedule(guided)

#tpragma omp parallel for schedule(guided)

many iterations fewer iterations
thread O - - ‘ * Large iteration chunks are assigned
initially.
thread 1 - - . * Asthe calculation progresses,
smaller chunks are assigned.
— 1 1
— 1 I

* |n most cases, this allows all cores to
finish their computation
simultaneously, which is optimal.
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Nested loops

* What happens if the number of iterations is small?
* Few iterations are assigned to each core.

* This may lead to a significant load imbalance, i.e., one of the cores finishes
much later than the others.

thread O
thread 1
thread 2

thread 3
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Balancing the workload

* |In general, it Is better to parallelize loops with many
iterations.

* This makes it easier for the scheduler to assign work to the
cores so that they all finish around the same time.

* |f your loop does not have enough iterations, you have the
option of “merging” it with the following nested loop.

* Thisis called loop collapse in OpenMP.
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Example of loop collapse

pragma omp parallel for collapse(2)

for (int 1 =
for (int J
x[1 * no
v[1i * no
h
h
for (int 1
for (i1nt 1
for (int jJ

N © ©

OF

+ + |

1
O;
] ]
J ]

9. A

. A A

no ;
< n@
1 x
1_

++1) {

++J) 1
n@ + J;

J;

n; ++1) ASSERT_EQ(x[1], float(1i));

no ;

< hO;

++1)

++7J) ASSERT_EQ(v[1 * n@ + 7],

float(1 - J));
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Example of loop collapse

pragma omp parallel for collapse(2)
for (i1nt 1 = 0; 1 < nO; ++1)
for (int J = 0; J < n®; ++3) z[1 * nO@ + J] = x[1 * n®@ + J] + v[1 * nO® + J];

for (int 1

= 0; 1 < nO; ++1)
for (int j =

O®; J < nO; ++3) ASSERT_EQ(z[1 * n® + 3], float(1 * (NG + 1)));
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Many other OpenMP concepts

- atomic

« Critical

- s1ngle

- task

- barrier, taskwailt

* Reference guides



https://www.openmp.org/resources/refguides/
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Part 3
Programming GPU processors using OpenACC



GEFORCE

RTX
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GPU for scientific computing

GPUs from NVIDIA and AMD boast significant single and double
precision performance due to a huge number of cores.

These are specialized processors that can deliver high-
performance but only on certain types of calculations:

* Massive amount of parallel operations
* Must be mainly data parallel

* Requires offloading large chunks of computations to the GPU
to amortize the cost of transferring data to/from the GPU.
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Performance trends

Number of Physical Cores/Multiprocessors, High-End Hardware
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https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
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History

* GPUs initially focused on 3D graphics = computing the color
of each pixel on the screen based on a 3D scene model.

* Featured example: ray tracing global illumination (RTXGl)
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GPGPU

General purpose GPU computing:

* Extension to general scientific
computations.

* Solving equations on a grid i1s similar to
rendering: perform the same regular
calculations on a large dataset.
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Deep learning

Recent advances in GPU computing target deep learning.
1. Linear algebra: matrix-matrix multiplications.

2. Mixed precision arithmetic: represents floating point
numbers using different numbers of binary bits.
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GPUs are great for

* Dense linear algebra with a massive amount of flops

* Partial differential equation solvers: finite-difference and
regular grid calculations

° Deep neural networks
Less suitable for:
* Irregular calculations with branching and uneven workloads

* Long series of sequential operations



Stanford University

What does a GPU processor look
like?



Stanford University

Schematic organization

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache

L1 Cache
L2 Cache

L2 Cache

L3Cache

CPU

L2 Cache

DRAM

GPU

The GPU devotes more transistors to data processing.
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GH100 (Hopper) with 144 Streaming Multiprocessors (SM)

PCI Express 5.0 Host Interface
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NVLink allows GPU processors to communicate without using the CPU.
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How to program GPUs
Introduction
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GPU processors are co-processors

* GPUs are different from conventional processors.
* [hey only work as co-processors.

* This means you need a host processor (e.g., Intel Core/
Xeon).
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* Your program runs on the host and uses an application
programming interface (API) to move data back and forth
to the GPU and run programs on the GPU.

* You cannot log on to the GPU directly or run an OS on the
GPU.
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OpenACC

* OpenMP can be used to program GPUs, but this is a
recent, less robust addition to the language.

* Support is currently somewhat limited.

* We will cover instead OpenACC, which was designed from
the beginning to program GPUSs.

* OpenACC = OpenMP for accelerator processor.
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Other programming solutions

Vendor agnostic:
* OpenCL
* Numba
Vendor specific:
* CUDA
* HIP
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OpenCL

* OpenCL: Open Computing Language

* Framework for writing programs that execute
across heterogeneous platforms, e.g., GPUs, digital
signal processors (DSPs)

* OpenCL provides a standard interface for parallel
computing using task- and data-based parallelism.

* OpenCL is an open standard maintained by
the non-profit technology consortium Khronos
Group.
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Python

Python has extensions that allow generating GPU code.

Example: Numba

2Numba



Stanford University

Numba

Many uses.

Just-in-time compilation of Python code for performance:

from numba 1import jit
1mport random

®dJi1t (nopython=True)
def monte_carlo_pi(nsamples):
acc = 0@
for 1 1n range(nsamples):
X random.xrxandom()
Y, random.xrxandom( )
if (X ** 2 +y %% 2) < 1.0:
acc += 1
return 4.0 * acc / nsamples
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Numba multi-threaded programming

Example of parallel for loop in Numba:

dJjl1t(nopython=True, parallel=True)
def simulator(out):

for 1 inout .Shape[0]) :
out [ Dh~——xth_sim()
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Numba for NVIDIA GPUs (CUDA)

from numba import cuda, float32

acuda.jit
def matmul(A, B, C):
1, J = cuda.grid(2)
1f 1 < C.shape[0®] and 7 < C.shape[1l]:
tmp = 0.
for k 1n ran€e(A.shape[l]):
tmp += A[1, k] * B[k, 7]
C[i, J] = tmp
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Numba for AMD ROC GPUs

from numba 1mport roc, float32

aroc.jit
def matmul(A, B, C):
1 roc.get_global_1d(0)
J roc.get_global_1d(1)
1f 1 < C.shape[0®] and 7 < C.shape[l]:
tmp = 0.
for k 1n range(A.shape[1l]):
tmp += A[1, k] * B[k, 7]
C[i, J] = tmp
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Vendor specific solutions




Stanford University

NVIDIA CUDA

NVIDIA.
CUDA

* Currently, the standard for writing GPU code.

* It only targets NVIDIA GPUs.

* Very mature and robust.

* But complex to use and requires significant code changes

* Initial release: June 23, 2007 (14 years ago)
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AMD GPUs

* AMD has a proprietary language for
programming its GPUs called HIP.

HIP can generate code for AMD and NVIDIA
GPUs.

* HIP is close to CUDA.

* HIP is designed to allow developers to convert
CUDA code easily.

* Part of the open-source ROCm stack.

AMD ¢t

ROCM




Let’s get started with OpenACC
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GPU access

Edit View Insert Runtime Tools He

First, you will need a GPU!

Select all cells 38 /Ctrl+Shift+A
Cut cell or selection

Copy cell or selection

Paste
Delete selected cells 38 /Ctrl+M D
|
G O tO [ N Ote b O O k S ett I n S Find and replace 38 /Ctrl+H
- g Find next 88/Ctrl+G
Find previous 38 /Ctrl+Shift+G
Notebook settings

Clear all outputs

Then SeleCt GPU under Hardware Notebook settings

Hardware accelerator

GPU v @

aC C e I e rato r To get the most out of Colab, avoid using a GPU unless you need

one. Learn more

[ ] Background execution

Want your notebook to keep running even after you

close your browser? Upgrade to Colab Pro+

De m O: O p e n a C C — -L a b m i p y n b Omit code cell output when saving this notebook

Cancel Save
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Hardware

You should be able to test which GPU you have access to:

[2] 1 !'nvidia-smi -—-query-gpu=gpu_name,gpu_bus_id,vbios_version ——format=csv

names—pCli.bus_1d, vbios_version
Tesla T4, 00000000:00:04.0, 90.04.A7.00.01

Demo: openacc_lab.1ipynb
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Installation

You will need to install the NVIDIA HPC SDK, which contains

the OpenACC compiler and can generate code for NVIDIA
GPUs.

Run the cells at the beginning of the notebook to install:

. install hpc.sh installs the NVIDIA HPC SDK

2. install gtest.shinstalls Google Test

The installation takes a few minutes.
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Our first GPU parallel loop

Very similar to OpenMP (at least in appearance)

const i1nt n = 32000000, Offloads to GPU

float* x = new float[n]; 4/////////,

#tpragma acc parallel loop “
for (int i = 0; i < n; ++i) x[i] = i;

for (int 1 = 0; 1 < n; ++1) ASSERT_EQ(x[1], float(1i));

Demo: openacc_Tlab.ipynb
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Let’s see what the compiler says

acc_lab.cpp:
accTest_loop Test::TestBody():
7, Generating NVIDIA GPU code
10, #pragma acc loop gang, vector(128) /% blockIdx.x threadIdx.x s/

7, Generating implicit copyout(x[:32000000]) [if not already present]

What are these messages saying?

L et’s focus on gang/vector first.
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Gang, worker, vector

This is less iImportant for us.

These variables are used because they reflect the way the
hardware I1s organized.

Thread: smallest execution unit in the program.
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Gang, worker, vector

Vector: a group of threads that can coordinate and execute
“together.”

Worker: a group of vectors that can coordinate and execute
“together;” this is a less Important concept.

Gang: a group of workers/vectors.
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Gang, worker, vector

For optimization purposes, the sizes of a vector, worker, or
gang can be specified.

This is a more advanced optimization.

pragma acc parallel Lloop num_gangs(40) num_workers(32) vector_length(32)
for (int 1 = 0; 1 < n; ++1) x[1] = 1;

accTest_vector_loop_Test::TestBody():
37, Generating NVIDIA GPU code
40, #pragma acc loop gang(40), worker(32), vector(32) /x blockIdx.x threadIdx.y threadIdx.x x/
37, Generating implicit copyout(x[:32000000]) [if not already present]
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CPU and GPU memories

* The memory of the CPU and the GPU are physically
separate.

e Sodata needto be transferred between the two memories
before a calculation can be run on the GPU.

* |n this case, the compiler detected that x was initialized on
the GPU.

* |t automatically generated instructions to copy the result
from the GPU to the CPU memory.
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Explicit data transfer clauses

#praema acc parallel Loop copvyout(x[:n])
for (int 1 = 0; 1 < n; ++1) x[1] = 1;

Clause Description

create space, initialize by copying to the device, copy back to host

o]0, .
Py at the end, release device memory

copvyin same but without copy back to host
copyout same but without initial copy to the device
Crxeate create space at the beginning, release at the end

present no action taken
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Array shaping

#praema acc parallel Lloop copyout(x[:n])

X[ :in]

- copy(array[starting_index:length])
* The first number is the start index of the array.

* The second number is how much data is to be
transferred.

Demo: openacc_lab.ipynb
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Data locality

* (x,y) initialization

* Vector zcomputation

for (int 1 = 0; 1 < n; ++1) {
x[1] L ;
y[1]

h

for (int 1 = 0; 1 < n; ++1) {
ASSERT_EQ(x[1], float(1i));
ASSERT_EQ(y[1], float(1i * 1));

h

for (int 1

for (i1nt 1

-

?

1 * 1;

; ++1) z[1] = x[1] + y[1];
 ++1) ASSERT_EQ(z[1], float(i * (1 + 1)));

Demo: openacc_lab.ipynb
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Data transfer

By default, the code would:
* Copy (x,y) to the device.
* Copy them back to the host for testing.
* Copy (x,y) again to the device.
* Copy zto the host.

The copies of (x,y) can be optimized.
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acc enter data

#fpragma acc enter data create(x[:n], vli:in])
#praema acc parallel Loop
for (1nt 1 = 0; 1 < n; ++1) {
X[1] 1;
v[i] = 1 * 1;

¥

enter data create

Creates the data on the GPU and leaves it there until instructed to
delete the data.
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acc update self

#pragma acc update self(x[:n], vl[:n])

for (int 1 = 0; 1 < n; ++1) {
ASSERT_EQ(x[1], float(1));
ASSERT_EQ(vy[1], float(1 * 1));

¥

* Because we used enter data create,the datais not
automatically copied back to the host.

* We needto add update self tocopy the data from device to
host.

 Also: #fipragma acc update device()
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acc exit data

#tpragma acc exlit data delete(x[:n], v[:n])

This deletes the data on the GPU and frees resources.

Each enter much be matched with an exit.



Stanford University

Full code

#pragma acc enter data create(x[:n], vI[:in])
#pragma acc parallel Loop
for (int 1 = 0; 1 < n; ++1) {
Xx[1] = 1;
y[i] = 1 * 1;

¥

#pragma acc update self(x[:n], v[:n])
for (int 1 = 0; 1 < n; ++1) {
ASSERT_EQ(x[1], float(1));
ASSERT_EQ(vy[1], float(1i * 1));

¥

#pragma acc parallel loop copyout(z[:n])
for (int 1 = 0; i < n; ++1) z[1i] = x[1] + vI[i];

#pragma acc exilt data delete (x[:n], v[:n])

for (1nt 1 = 0; 1 < n; ++1) ASSERT_EQ(z[1], float(x1 * (1 + 1)));
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Reduction

As In OpenMP, we need to use a special construct when we
have a reduction.

sum += x[1];

Otherwise, the different cores will attempt to access and
modify sum at the same time, which is a bug.
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Reduction example

float sum = 0O;
#pragma acc data create(x[:n])
{
#fpragma acc parallel Lloop
for (int 1 = 0; 1 < n; ++1) x[1] = 1;
#tpragma acc parallel loop reduction(+ : sum)
for (i1nt 1 = 0; 1 < n; ++1) sum += x[1];
h
for (int 1 = 0; 1 < n; ++1) ASSERT_EQ(sum, float(n));

Note the data create to avold unnecessary coples.
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collapse

* GPU are massively parallel processors.
* They can contain thousands of cores.

* Example: GeForce RTX 3090 Ti: 10,752 cores.

* So we need to generate as much concurrency (parallelism)
In our code.

* Loop fusion is critical for performance when the number
of iterations is not large enough.
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for loop with collapse

#praema acc parallel Loop collapse(2)
for (1nt 1 = 0; 1 < n; ++1) {
for (int J = 0; J < n; ++3) {
z[1 * n + 7] x[i * n+ J] + v[1 * n + j];
l
l

* 1and ] loops will be merged and executed in parallel.

* Without collapse, only the 1 loop Is parallelized while the j loop Is
executed sequentially.

* collapse allows generating n*n parallel threads instead of just n.

* This can improve performance significantly.
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Complete example with collapse

pragma acc enter data create(x[:n * n], v[L:n * n])
pragma acc parallel Lloop collapse(2)
for (int 1 = 0; 1 < n; ++1)
for (int J = 0; J < n; ++3) {
X[1 * n + J] 1 *n + J;
vii*n+ J] =1 - 3;

¥

praegma acc update self(x[:n * n], v[:in * n])
for (int 1 = 0; 1 < n * n; ++1) ASSERT_EQ(x[1], float(i));
for (int 1 = 0; 1 < n; ++1)
for (int j = J < n; ++3J) ASSERT_EQ(v[1 * n + J], float(i - 3J));
pragma acc parallel Lloop collapse(2) copvyout(z[:n * nJj)
for (int 1 = 0; 1 < n; ++1)

for (int J = 0; J < n; ++3) z[1 * n + J] = x[1 *n + J] + v[1 * n + J];

pragma acc exilit data delete(x[:n * n], v[:n * n])
for (int 1 = 0; 1 < n; ++1)
for (int j = 0; j < n; ++3j) ASSERT_EQ(z[i * n + j], float(i * (n + 1)));
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n body problem

Let’s look at a more complex real-life application.

We want to model the gravitational interactions between n
bodies with mass.

This is similar to modeling the motions of the planets around
the sun In the solar system.
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Gravitational force

We start from £, = m;a, .

The accelerationis given by the gravitational force:
— 7;

F,=m. m;
Z IIF —r||3

JF1
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Equations of motion
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Time integrator

* We numerically solve these equations using the velocity
Verlet time integrator.

* |t's not very accurate, but it remains stable over many
time steps.

* Thisisatwo-step method.
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Velocity Verlet

* Step 1: advance the velocity

* Step 2: advance the position
n+l __ _.n n+1
r =1+ At V!

* Repeat
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for (int 1 =
real fx, fy
for (int 3
real3 ff

fx += ff.

fy += ff.

fz += ff.
h
force[1].X
force[1].yv
force[1].z

OF

?

X

N <

Force computation
1 < n; 1++) {
fz; fx = fy = fz = 0;
O; J < n; J++) |

forceComputation(pos[1].X,

fX;

fy;
fz;

Demo: nbody.ipynb

pos[J].x,

pos[1].v,
pos[Jl.v,

pos[1].z,
pos[]].z,

pos[J].w);
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for (1nt

vel[1l].
vel[1l].
vel[1l].

pos[1].
pos[1].
pos[1].

h

N < X
+

N < X
+

+ +

+ +

Time step

O; 1 < n; 1++) {

force[1].x * dt;
force[1].v * dt;
force[1].z * dt;

vel[1].x * dt;
vel[1].v * dt;
vel[1].z * dt;

Demo: nbody.ipynb
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Time integration

for (int 1 = 0; 1 < 1terations; 1++) {
segInteerate(pos, vel, force, dt, n);

h

Demo: nbody.ipynb
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Parallel time stepping loop

#pragma acc data copy(pos[:n], vel[:n]) copvyout(forcel[:n])
for (1nt 1 = 0; 1 < 1terations; 1++) {
inteerate(pos, vel, force, dt, n);

¥

* Optimize the movement of data by reducing memory
copies between host and device.

* Only done before the iterations start and after they are
complete.
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Nested parallel loops with reduction

pragma acc parallel Lloop
for (1nt 1 = 0; 1 < n; 1++) {

real fx, fy, fz;

fx = fy = fz = 0;
pragma acc loop reduction(+ : fx, fy, fz)

for (int J = 0; J < n; J++) {

real3 ff = forceComputatlon(pos[i].x, pos[1].vy, pos[1i].z, pos[]].X,
pos[J].y, pos[J].z, pos[J].w);

fx += ff.x;

fy += ff.y;

fz += ff.z;
h
force[1].x = fX;
force[1].y = fy;
force[1].z = fz;

}
Demo: nbody.ipynb
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#praema acc parallel Loop

for (int 1

vel[1]

. X
vel[1i].
vel[1il].
pos[1].
nos[1].
pos[1].

N < X N

+

O; 1 < n;

+= forcel1l].

+ + +

Demo: nbody.ipynb

force[1].
force[1].
vel[1].x
vel[1].v
vel[1l].z

Parallel time step

i++) {

X

% ok N <

* dt;
* dt;
* dt;
dt;
dt;
dt;
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Performance results

o 5 WN -

n = 4096 bodies for 20 1iterations
OpenACC: 2185.000000 ms: 3.071344 GFLOP/s
Sequential: 2206.000000 ms: 3.042106 GFLOP/s

n = 4096 bodies for 20 iterations
OpenACC: 1959.000000 ms: 3.425669 GFLOP/s
2197.000000 ms: 3.054568 GFLOP/s

n = 4096 bodies for 20 1iterations

OpenMP: 2197.000000 ms: 3.054568 GFLOP/s
Sequential: 2169.000000 ms: 3.094000 GFLOP/s
n = 4096 bodies for 20 iterations

C++: 4257.000000 ms: 1.576436 GFLOP/s

Sequential: 4257.000000 ms: 1.576436 GFLOP/s

'name=nbody; nvc++ -I. —-acc=host -0 -0 $name $name.cpp && ./$name 4096 20
'name=nbody; nvc++ -I. —acc=multicore -0 -0 $name $name.cpp && ./$name 4096 20
'name=nbody; nvc++ -I. —-acc=gpu -0 —o $name $name.cpp && ./$name 4096 20
'name=nbody; nvc++ -I. —mp=multicore -0 —-o $name $name.cpp && ./$name 4096 20
'name=nbody; g++ —-std=c++17 -I. -0 —o $name $name.cpp && ./$name 4096 20

We only use a single CPU
thread on Google compute.




1 "'name=te

st_nbody; nvc++ -I.

test_nbody.cpp:
Running main() from googletest-main/googletest/src/gtest_main.cc

. RUN

Running 5 tests from 1 test suite.
Global test environment set-up.

5 tests from nbodyTest
nbodyTest.iterations_small_@

8 tests PASSED. Maximum error = 0.
6 tests PASSED. Maximum error = 0.
6 tests PASSED. Maximum error = 0.

[ 0K
[ RUN

] nbodyTest. 1terat10ns small_@ (259 ms)
] nbodyTest.iterations_small_1

128 tests PASSED. Maximum error = 1.13687e-13.

06 tests PASSED. Maximum error
06 tests PASSED. Maximum error

[ 0K

[ RUN

4096 tests

3072 tests

3072 tests

[ 0K

[ RUN

4096 tests

3072 tests

3072 tests

[ 0K

[ RUN

16384 tests
12288 tests
12288 tests

PASSED

OK |

9.31323e-10.
7.45058e-009.

] nbodyTest.iterations_small_1 (@ ms)
] nbodyTest.iterations_medium_0

PASSED. Maximum error = 2.27374e-13.
PASSED. Maximum error = 1.49012e-08.
PASSED. Maximum error = 1. 49012e 07.

] nbodyTest.iteration

PASSED. MaximumgZ€rror = 4.76837e-07.
PASSED. Maximu = 3.8147e-06.
PASSED. MaximumN\error =

1.22935e-07.

] nbodyTest.iteration
PASSED. Maximum error = 5.96046e-07.
PASSED. Maximum error = 3.8147e-06.
PASSED. Maximum error = 4.02331e-07.
nbodyTest.iterations large (457 ms)
5 tests from nbodyTest (764 ms total)

Global test environment tear-down
5 tests from 1 test suite ran. (764 ms total)
5 tests.

—acc=gpu -0 $%$name $name.cpp gtest_main.a && ./$name

Accuracy

Roundoff errors between CPU
and GPU in single precision
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we hope You enjoyed this workshop!




