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1. Introduction to High-Performance computing; history of 
HPC and current trends


2. How to program a multicore processor using OpenMP? 
This is the basis of HPC programming and an easy entry 
point.


3. GPU processors provide the backbone of HPC platforms 
for number crunching. We will cover OpenACC to write 
HPC programs for GPU processors.

Content of workshop



Part 1


Introduction to HPC


History of HPC computers



• Standard computers perform tasks sequentially, that is, 
transaction-by-transaction.


• This means that the next transaction, or job, happens only 
when the computer completes the previous one. 


• In contrast, HPC uses many resources such as processors 
to complete many jobs simultaneously.

What is high-performance computing?



• For the most part, HPC occurs on supercomputers. 


• These powerful systems help companies solve problems 
that could otherwise be insurmountable. 


• These problems, or tasks, require processors that can 
carry out instructions faster than standard computers.


• This is achieved by running many processors in parallel 
to obtain answers within a practical duration.

Supercomputers



• HPC jobs require fast disks and high-
speed memory.


• HPC systems include computing and 
data-intensive servers with powerful 
CPUs that can be vertically stacked.


• HPC systems often have powerful 
graphics processing units (GPUs) 
that can run general-purpose 
computations.

HPC hardware

NVIDIA HPC system

Stanford XStream compute cluster



What is parallel computing?


Parallel computing HPC systems involve hundreds of 
processors, each running calculation payloads 
simultaneously.


HPC system designs



What is cluster computing?


• Cluster computing is a type of parallel HPC 
system consisting of a collection of computers 
working together as an integrated resource.


• Clusters can accommodate multiple applications 
and resources. They are managed by policy-
based scheduling and can handle a dynamic 
workload consisting of large numbers of jobs.


HPC system designs

Stanford XStream compute cluster



What are grid and distributed computing?


Grid and distributed computing HPC systems 
connect the processing power of multiple 
computers within a network. The network can 
be a grid at a single location or distributed 
across a wide area in different places, 
linking network, compute, data, and 
instrument resources.


Main vendors: Amazon Web Services 
(AWS), Microsoft Azure, and Google 
Cloud Platform

HPC system designs

https://www.srgresearch.com/

Amazon data center



Some of the key applications include:


• 	Big data: massive multi-dimensional datasets


• 	Data analytics


• 	Extreme performance database


• 	Machine learning

Applications of HPC



Automotive and aerospace


	 CFD-aerodynamic modeling


	 FEA-impact and structural strength analysis


	 CAD and CAM


Banking, financial services markets and 

insurance


	 Monte Carlo simulations


	 Risk analysis


	 Fraud detection


Electronics design automation (EDA)


	 Chip design and optimization


	 Circuit simulation and verification


	 Manufacturing optimization


Film, media and gaming


	 Rendering


	 Computer-aided graphics


	 Computer-generated images (CGI)


	 Transcoding and encoding


	 Real-time image analysis and processing


Government and defense


	 Intelligence agency


	 Fraud analysis


	 Climate modeling


	 Weather forecasting


	 Energy


	 Nuclear stewardship


	 Exploration


Life sciences


	 Genomic processing and sequencing


	 Pharmaceutical design


	 Molecular modeling and biology simulation


	 Protein docking


Oil and gas


	 Seismic data processing


	 Reservoir simulation and modeling


	 Geospatial analytics


	 Terrain and topology mapping


	 CFD-aerodynamic modeling


	 Wind simulation


Retail


	 Inventory analysis


	 Logistics and supply chain optimization


	 Sentiment analysis


	 Marketing offers

Applications!



The beginnings:


• HPC market: scientific discoveries; Fortran (Formula 
Translation)


• Cray Research: supercomputers; focus: floating-point operations


• 1960’s: specialized and expensive supercomputers; cold war, 
strategic necessity


• 1980’s: number of processors goes up. Multiple processors 
(sometimes hundreds) are connected through a network.

A short history of HPC



• Vendors turn to commodity markets where processors 
are sold in large quantities.


• Monolithic supercomputer systems splinter as many 
commodity components can be purchased from 
competing vendors.


• The economic barrier of entry is lowered by at least a 
factor of ten.

A short history of HPC



• Operating system: UNIX.


• 1981, Linus Torvalds released a 
freely available version of Linux.


• Message Passing Interface (MPI) 
library.

Beowulf clusters

Borg, a 52-node Beowulf cluster used by 
the McGill University pulsar group to search for 

pulsations from binary pulsars

https://en.wikipedia.org/wiki/Pulsar


• The performance of “Beowulf Clusters” (named for the 
NASA project that developed these systems) comes close 
to that of supercomputers of the day: commodity-grade 
computers + free and open source software + MPI.


• High-performance interconnects are developed; the 
market settles on InfiniBand (Mellanox)


• Name “supercomputer” replaced by “HPC systems.”

Beowulf clusters



Three issues limit an increase in clock speed:


1. Memory Speed: the gap between processor and 
memory speed continued to grow


2. Instruction Level Parallelism: the increasing 
difficulty of finding enough parallelism in a single 
instruction stream


3. Power Wall: increased processor frequency causes 
an increase in operating temperature

The multi and many core explosion



• The era of multi-core: dual-core processors; more cores 
added to each new generation of processors


• Commodity Graphics Processing Units (GPUs) that 
contain large numbers (hundreds to thousands) of small, 
efficient cores.

The multi and many core explosion



“On the Role of Co-design in High Performance Computing,” R. F. Barrett et al.

Exascale computing and co-design

The co-design strategy is based on developing partnerships with computer vendors 
and application scientists and engaging them in a highly collaborative and iterative 
design process well before a given system is available for commercial use. The process 
is built around identifying leading edge, high-impact scientific applications and providing 
concrete optimization targets rather than focusing on speeds and feeds (FLOPs and 
bandwidth) and percent of peak. Rather than asking “what kind of scientific 
applications can run on an Exascale system” after it arrives, this application-
driven design process instead asks “what kind of system should be built to meet 
the needs of the most important science problems.” This leverages eep 
understanding of specific application requirements and a broad-based computational 
science portfolio.



HPC history in pictures

CM-5: Los Alamos National Lab 
No.1 in Jun 1993

ASCI Red: Sandia National 
Laboratory 
No.1 from Jun 1997 until Jun 
2000

BlueGene/L: Lawrence 
Livermore National Laboratory 
No.1 from Nov 2004 until Nov 
2007

Tianhe-1A: National 
Supercomputing Center in 
Tianjin 
No.1 in Nov 2010

Titan: Oak Ridge National 
Laboratory 
No.1 in Nov 2012 Sunway TaihuLight: National 

Supercomputing Center in 
Wuxi 
No.1 from Jun 2016 until Nov 
2017

Summit: DOE/SC/Oak Ridge 
National Laboratory 
No.1 from Jun 2018 until Nov 
2019

Supercomputer Fugaku: RIKEN 
Center for Computational 
Science 
No.1 from Jun 2020 until Nov 
2020



LINPACK achieved Theoretical peak



Intel

Mellanox





Performance development



But before diving in further…

Let’s get to know each other



• Eric Darve, ME, ICME, darve@stanford.edu 


• Numerical linear algebra, machine learning for mechanics 
and engineering, parallel computing

Instructor



• Chenzhuo Zhu 


• I am a graduating Ph.D. student at Stanford EE, 
advised by Prof. Bill Dally. I am interested in 
computer architecture and memory system design 
for data center applications.


• I grew up in Beijing, China. I received my B.S degree 
from Tsinghua University before coming to Stanford. 


• I have worked as a teaching assistant for CME 
courses on scientific and parallel programming. 


• I am also a snowboarder and a private pilot.

Teaching Assistant



Mark your current location using zoom “Annotate → Stamp”



We will get an overview of parallel programming using two 
very accessible but powerful techniques:


1. Shared memory multicore processors using OpenMP.


2. GPU computing (NVIDIA + AMD) using OpenACC.

What this class is about



Parallel programs often look very different from 
sequential programs.

Thinking parallel



Sequential thinking Parallel thinking



How would you count the number of candies of each color?



Using 2 cores



Using 4 cores



Using 200 cores



The initial step of counting candies goes fast.


But after that, the following steps of reduction become problematic.


Can we use a single core to calculate the final sum for each candy?


• This is inefficient


How can we compute the final reduction efficiently and in parallel?



Efficient algorithm requires a tree reduction



Counting candies in parallel is more 
complicated than we initially thought.



Part 2


Programming multicore processors using OpenMP



Let’s talk about shared memory computing.


This is the simplest method.


It applies to your laptop, desktop computer, or even your 
phone.



Shared memory processor architecture

Interconnection network
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Network



Schematic


• Several processors or cores


• A shared physical memory (global memory)


• An interconnection network to connect the processors 
with the memory

Shared memory processor architecture



• Memory is key to developing high-performance multicore 
applications


• More cores do not necessarily mean faster execution.


• Memory traffic and time to access memory are often 
more critical than flops.


• Memory is hierarchical and complex.

Multicore performance



• Google Colab


• Allows running CPU and GPU sample codes in the 
cloud with no setup required!


• Demo: colab_demo.ipynb

Our teaching platform



In this workshop, we will focus on two solutions:


• OpenMP to program multicore processors


• OpenACC to program GPUs

OpenMP and OpenACC



• OpenMP simplifies multicore programming significantly. 


• In many cases, adding one line of code is sufficient to 
make it run in parallel.


• OpenMP is the standard approach in scientific computing 
for multicore processors.

OpenMP makes scientific multithreaded programming very easy!



Standardization:


• Provide a standard among a variety of shared memory architectures/
platforms.


• Jointly defined and endorsed by a group of major computer hardware and 
software vendors.


Simple but powerful:


• Establish a simple and limited set of directives for programming shared 
memory machines.


• Significant parallelism can be implemented by using just 3 or 4 directives.


• This goal is becoming less true with each new release, unfortunately.

Goals of OpenMP



Ease of use:


• Provide the capability to parallelize a serial program incrementally.


• Provide the ability to implement both coarse-grained and fine-grained 
parallelism.


Portability:


• The API is specified for C/C++ and Fortran.


• Public forum for API and membership


• Most major platforms have been implemented, including Unix/Linux 
and Windows.

Goals of OpenMP



• OpenMP website https://openmp.org 

• Wikipedia https://en.wikipedia.org/wiki/OpenMP 

• LLNL tutorial https://hpc-tutorials.llnl.gov/
openmp 

• Intel https://www.intel.com/content/dam/www/
public/apac/xa/en/pdfs/ssg/
Programming_with_OpenMP-Linux.pdf 

Reference material



https://www.openmp.org/
uncategorized/openmp-timeline/ 
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workshops on OpenMP in 
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2.0

The OpenMP ARB reaches 
15 members of which 5 

are supercomputing 
centers. This mixture of 
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trademark of OpenMP’s 
cooperative style of 
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"rst Technical Report 

that outlines how 
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Let’s take a simple piece of code to get started:

Hello World example

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = std::sqrt(float(i));

  }

Demo: omp_hello_world.ipynb



• Assume you have multiple cores that can do 
computation in parallel.


• The for loop can be split across the cores, and each core 
can compute a small chunk of the iterations.

How can we parallelize this code?

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = std::sqrt(float(i));

  }



How can we parallelize this code?

 i = 0                                   i = n-1

core 0 core 1 core 2 core 3

We can distribute the computation across the 
different cores using OpenMP.

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = std::sqrt(float(i));

  }



Let’s parallelize the first loop that calculates x[i] and y[i].

OpenMP code

  const int num_threads = 4;

  omp_set_num_threads(num_threads);

#pragma omp parallel for

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = std::sqrt(float(i));

    core[i] = omp_get_thread_num();

  }

  for (int i = 0; i < n; ++i)

    printf("Iteration %d was computed by thread %d\n", i, core[i]);



Output



Writing HPC code for scientific applications is not easy.


Thinking in parallel is much more complicated than thinking 
sequentially and is error-prone.


An important strategy to find errors is to use unit testing:


• Write a small piece of code in a function


• Immediately test that the function works as expected

Unit testing



An excellent library for unit testing is GoogleTest.


It provides a simple infrastructure to write and manage tests.


Let’s learn how it works and how to use it.

GoogleTest



Function to initialize a vector:

Example of test

void init_i() {

  for (int i = 0; i < n; ++i) x[i] = i;

}

Demo: googletest.ipynb



• Use the macro TEST


• Use testing macros like ASSERT_EQ.


• Many additional macros and functions available in the library.

How to write a unit test

TEST(demoTest, init) {

  init_i();

  for (int i = 0; i < n; ++i) ASSERT_EQ(x[i], float(i));

}



• Calculations on a computer are not exact.


• Each operation generates a small roundoff error.


• The approximate number of accurate digits depends on 
the precision of the floating point format.

Beware of roundoff errors

Single precision Double precision

~ 7.2 ~ 15.9



This test does not suffer 
from roundoff errors.

“Exact” test

void init_1() {

  for (int i = 0; i < n; ++i) x[i] = 1;

}

void sum_x() {

  sum = 0;

  for (int i = 0; i < n; ++i) sum += x[i];

}

TEST(demoTest, sum) {

  init_1();

  sum_x();

  ASSERT_EQ(sum, float(n));

}



Roundoff errors are equal to:  0.000042; tolerance threshold:  
0.001192.

With larger numbers, roundoff errors start appearing
void init_i() {

  for (int i = 0; i < n; ++i) x[i] = i;

}

void sum_x() {

  sum = 0;

  for (int i = 0; i < n; ++i) sum += x[i];

}

TEST(demoTest, sum_i) {

  init_i();

  sum_x();

  const float expd = float(n * (n - 1) / 2.);

  ASSERT_NEAR(sum, expd, n * expd * mach_eps);

  printf("Roundoff errors are equal to: %9.6f; tolerance threshold: %9.6f.\n",

         abs((sum - expd) / expd), n * mach_eps);

}



Determining whether a calculation is “correct” can be difficult.


Is the difference due to a coding error, or is it a roundoff error?

Is my calculation accurate?



• Unit testing is one of the many methods you need to learn 
to be able to write correct code for complex applications.


• Additional documentation at:

https://google.github.io/googletest/ 

Unit testing and debugging

https://google.github.io/googletest/


Let’s test our 
OpenMP Hello World!

TEST(ompTest, omp_loop) {

#pragma omp parallel for

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = i * i;

  }

  for (int i = 0; i < n; ++i) {

    ASSERT_EQ(x[i], i);

    ASSERT_EQ(y[i], i * i);

  }

#pragma omp parallel for

  for (int i = 0; i < n; ++i) {

    z[i] = x[i] + y[i];

  }

  for (int i = 0; i < n; ++i) {

    ASSERT_EQ(z[i], (float)(i + i * i));

  }

}

Demo: omp_lab.ipynb



• OpenMP is a vast topic with a lot of additional 
functionalities.


• We will only review some of the main features.


• An important one is the reduction operator.

More on OpenMP



Consider the following code:


  float sum = 0;

  for (int i = 0; i < n; ++i) {

    sum += x[i];

  }


Reduction



    sum += x[i];


If multiple cores attempt to update the variable sum at the 
same time, the result becomes undetermined.


This will lead to an erroneous result. This is a bug!

Race condition



We need to tell the compiler that sum should be computed 
differently.


Adding numbers is called a reduction operation.


We have to use the OpenMP reduction clause to get the 
correct code.

OpenMP reduction



• The final result will now be correct.


• Other reduction operators: -, *, max, min


• + logical and boolean operators

Reduction clause

  float sum = 0;

#pragma omp parallel for reduction(+ : sum)

  for (int i = 0; i < n; ++i) {

    sum += x[i];

  }



• Loop scheduling is critical for performance.


• OpenMP has extensive functionalities to improve 
performance of for loop executions.


• This can be achieved by specifying different loop 
scheduling policies.

How should we schedule loops?



Example of static policy

#pragma omp parallel for schedule(static, 32)

  for (int i = 0; i < n; ++i) {

    z[i] = x[i] + y[i];

  }



What does this do?



schedule(static, 1)

#pragma omp parallel for schedule(static, 1)

thread 0

thread 1

thread 2

thread 3
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schedule(static, 2)

#pragma omp parallel for schedule(static, 2)

thread 0

thread 1

thread 2

thread 3
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Example

#pragma omp parallel for

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = i * i;

  }

#pragma omp parallel for schedule(static, 32)

  for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];


  for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], (float)(i+i*i));




schedule(dynamic, 1)

#pragma omp parallel for schedule(dynamic, 1)

thread 0

thread 1

thread 2

thread 3
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3
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Example

#pragma omp parallel for schedule(dynamic, 32)

  for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];


  for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], (float)(i+i*i));

chunk size



schedule(guided)
#pragma omp parallel for schedule(guided)

thread 0

thread 1

thread 2

thread 3

• Large iteration chunks are assigned 
initially.


• As the calculation progresses, 
smaller chunks are assigned.


• In most cases, this allows all cores to 
finish their computation 
simultaneously, which is optimal.

many iterations fewer iterations



• What happens if the number of iterations is small?


• Few iterations are assigned to each core.


• This may lead to a significant load imbalance, i.e., one of the cores finishes 
much later than the others.

Nested loops

thread 0

thread 1

thread 2

thread 3



• In general, it is better to parallelize loops with many 
iterations.


• This makes it easier for the scheduler to assign work to the 
cores so that they all finish around the same time.


• If your loop does not have enough iterations, you have the 
option of “merging” it with the following nested loop.


• This is called loop collapse in OpenMP.

Balancing the workload



Example of loop collapse

#pragma omp parallel for collapse(2)

  for (int i = 0; i < n0; ++i) {

    for (int j = 0; j < n0; ++j) {

      x[i * n0 + j] = i * n0 + j;

      y[i * n0 + j] = i - j;

    }

  }

  for (int i = 0; i < n; ++i) ASSERT_EQ(x[i], float(i));

  for (int i = 0; i < n0; ++i)

    for (int j = 0; j < n0; ++j) ASSERT_EQ(y[i * n0 + j], float(i - j));



Example of loop collapse

#pragma omp parallel for collapse(2)

  for (int i = 0; i < n0; ++i)

    for (int j = 0; j < n0; ++j) z[i * n0 + j] = x[i * n0 + j] + y[i * n0 + j];


  for (int i = 0; i < n0; ++i)

    for (int j = 0; j < n0; ++j) ASSERT_EQ(z[i * n0 + j], float(i * (n0 + 1)));



• atomic


• critical


• single


• task


• barrier, taskwait


• …


• Reference guides

Many other OpenMP concepts

https://www.openmp.org/resources/refguides/


Part 3


Programming GPU processors using OpenACC



GPUs!



GPUs from NVIDIA and AMD boast significant single and double 
precision performance due to a huge number of cores.


These are specialized processors that can deliver high-
performance but only on certain types of calculations:


• Massive amount of parallel operations


• Must be mainly data parallel


• Requires offloading large chunks of computations to the GPU 
to amortize the cost of transferring data to/from the GPU.

GPU for scientific computing



Performance trends

Karl Rupp

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/ 

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/


• GPUs initially focused on 3D graphics = computing the color 
of each pixel on the screen based on a 3D scene model.


• Featured example: ray tracing global illumination (RTXGI) 

History



General purpose GPU computing:


• Extension to general scientific 
computations.


• Solving equations on a grid is similar to 
rendering: perform the same regular 
calculations on a large dataset.

GPGPU



Recent advances in GPU computing target deep learning.


1. Linear algebra: matrix-matrix multiplications.


2. Mixed precision arithmetic: represents floating point 
numbers using different numbers of binary bits.

Deep learning



Tensor Cores

H100 FP16 Tensor Core has 3x throughput compared to A100 FP16 Tensor Core



• Dense linear algebra with a massive amount of flops


• Partial differential equation solvers: finite-difference and 
regular grid calculations


• Deep neural networks


Less suitable for:


• Irregular calculations with branching and uneven workloads


• Long series of sequential operations

GPUs are great for



What does a GPU processor look 
like?



Schematic organization

The GPU devotes more transistors to data processing.



GH100 (Hopper) with 144 Streaming Multiprocessors (SM)

NVLink allows GPU processors to communicate without using the CPU.



GH100 Streaming 
Multiprocessor (SM)


• Special Functions Units (SFUs): 
execute transcendental instructions 
such as sin, cosine, reciprocal, and 
square root.


• Dispatch Unit: instruction dispatch



How to program GPUs

Introduction



• GPUs are different from conventional processors. 


• They only work as co-processors. 


• This means you need a host processor (e.g., Intel Core/
Xeon).

GPU processors are co-processors



• Your program runs on the host and uses an application 
programming interface (API) to move data back and forth 
to the GPU and run programs on the GPU. 


• You cannot log on to the GPU directly or run an OS on the 
GPU.



Allocate memory on 
GPU

CPU GPU

Allocation

Copy data

Launch kernel

Kernel execution

Copy data

Free memory on 
GPU

Asynchronous

Host to Device

Device to Host



• OpenMP can be used to program GPUs, but this is a 
recent, less robust addition to the language.


• Support is currently somewhat limited.


• We will cover instead OpenACC, which was designed from 
the beginning to program GPUs.


• OpenACC = OpenMP for accelerator processor.

OpenACC



Vendor agnostic:


• OpenCL


• Numba


Vendor specific:


• CUDA


• HIP

Other programming solutions



• OpenCL: Open Computing Language


• Framework for writing programs that execute 
across heterogeneous platforms, e.g., GPUs, digital 
signal processors (DSPs)


• OpenCL provides a standard interface for parallel 
computing using task- and data-based parallelism.


• OpenCL is an open standard maintained by 
the non-profit technology consortium Khronos 
Group.

OpenCL



Python has extensions that allow generating GPU code.


Example: Numba

Python



Many uses.


Just-in-time compilation of Python code for performance:

Numba

from numba import jit

import random


@jit(nopython=True)

def monte_carlo_pi(nsamples):

    acc = 0

    for i in range(nsamples):

        x = random.random()

        y = random.random()

        if (x ** 2 + y ** 2) < 1.0:

            acc += 1

    return 4.0 * acc / nsamples



Example of parallel for loop in Numba:

Numba multi-threaded programming

@jit(nopython=True, parallel=True)

def simulator(out):

    # iterate loop in parallel

    for i in prange(out.shape[0]):

        out[i] = run_sim()



Numba for NVIDIA GPUs (CUDA)

from numba import cuda, float32


@cuda.jit

def matmul(A, B, C):

    i, j = cuda.grid(2)

    if i < C.shape[0] and j < C.shape[1]:

        tmp = 0.

        for k in range(A.shape[1]):

            tmp += A[i, k] * B[k, j]

        C[i, j] = tmp



Numba for AMD ROC GPUs
from numba import roc, float32


@roc.jit

def matmul(A, B, C):

    i = roc.get_global_id(0)

    j = roc.get_global_id(1)

    if i < C.shape[0] and j < C.shape[1]:

        tmp = 0.

        for k in range(A.shape[1]):

            tmp += A[i, k] * B[k, j]

        C[i, j] = tmp



Vendor specific solutions



• Currently, the standard for writing GPU code.


• It only targets NVIDIA GPUs.


• Very mature and robust.


• But complex to use and requires significant code changes


• Initial release: June 23, 2007 (14 years ago)

NVIDIA CUDA



• AMD has a proprietary language for 
programming its GPUs called HIP.


• HIP can generate code for AMD and NVIDIA 
GPUs.


• HIP is close to CUDA.


• HIP is designed to allow developers to convert 
CUDA code easily.


• Part of the open-source ROCm stack.

AMD GPUs



Let’s get started with OpenACC



First, you will need a GPU!


Go to: Notebook settings


Then select GPU under Hardware 
accelerator

GPU access

Demo: openacc_lab.ipynb



You should be able to test which GPU you have access to:

Hardware

Demo: openacc_lab.ipynb



You will need to install the NVIDIA HPC SDK, which contains 
the OpenACC compiler and can generate code for NVIDIA 
GPUs.


Run the cells at the beginning of the notebook to install:


1. install_hpc.sh installs the NVIDIA HPC SDK


2. install_gtest.sh installs Google Test


The installation takes a few minutes.

Installation



  const int n = 32000000;

  float* x = new float[n];


#pragma acc parallel loop

  for (int i = 0; i < n; ++i) x[i] = i;


  for (int i = 0; i < n; ++i) ASSERT_EQ(x[i], float(i));

Very similar to OpenMP (at least in appearance)

Our first GPU parallel loop

Offloads to GPU

Demo: openacc_lab.ipynb



What are these messages saying?


Let’s focus on gang/vector first.

Let’s see what the compiler says



This is less important for us.


These variables are used because they reflect the way the 
hardware is organized.


Thread: smallest execution unit in the program.

Gang, worker, vector



Vector: a group of threads that can coordinate and execute 
“together.”


Worker: a group of vectors that can coordinate and execute 
“together;” this is a less important concept.


Gang: a group of workers/vectors. 

Gang, worker, vector



For optimization purposes, the sizes of a vector, worker, or 
gang can be specified.


This is a more advanced optimization.

Gang, worker, vector

#pragma acc parallel loop num_gangs(40) num_workers(32) vector_length(32)

  for (int i = 0; i < n; ++i) x[i] = i;



• The memory of the CPU and the GPU are physically 
separate.


• So data need to be transferred between the two memories 
before a calculation can be run on the GPU.


• In this case, the compiler detected that x was initialized on 
the GPU.


• It automatically generated instructions to copy the result 
from the GPU to the CPU memory.

CPU and GPU memories



Explicit data transfer clauses
#pragma acc parallel loop copyout(x[:n])

  for (int i = 0; i < n; ++i) x[i] = i;

Clause Description

copy create space, initialize by copying to the device, copy back to host 
at the end, release device memory

copyin same but without copy back to host

copyout same but without initial copy to the device

create create space at the beginning, release at the end

present no action taken



x[:n]


• copy(array[starting_index:length]) 


• The first number is the start index of the array.


• The second number is how much data is to be 
transferred.

Array shaping

#pragma acc parallel loop copyout(x[:n])

Demo: openacc_lab.ipynb



• (x,y) initialization


• Vector z computation

Data locality

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = i * i;

  }

  for (int i = 0; i < n; ++i) {

    ASSERT_EQ(x[i], float(i));

    ASSERT_EQ(y[i], float(i * i));

  }

  for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];

  for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], float(i * (i + 1)));

Demo: openacc_lab.ipynb



By default, the code would:


• Copy (x,y) to the device.


• Copy them back to the host for testing.


• Copy (x,y) again to the device.


• Copy z to the host.


The copies of (x,y) can be optimized.

Data transfer



enter data create 


Creates the data on the GPU and leaves it there until instructed to 
delete the data.

acc enter data

#pragma acc enter data create(x[:n], y[:n])

#pragma acc parallel loop

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = i * i;

  }



• Because we used enter data create, the data is not 
automatically copied back to the host.


• We need to add update self to copy the data from device to 
host.


• Also:    #pragma acc update device()

acc update self
#pragma acc update self(x[:n], y[:n])

  for (int i = 0; i < n; ++i) {

    ASSERT_EQ(x[i], float(i));

    ASSERT_EQ(y[i], float(i * i));

  }



This deletes the data on the GPU and frees resources.


Each enter much be matched with an exit.

acc exit data

#pragma acc exit data delete(x[:n], y[:n])



Full code
#pragma acc enter data create(x[:n], y[:n])

#pragma acc parallel loop

  for (int i = 0; i < n; ++i) {

    x[i] = i;

    y[i] = i * i;

  }


#pragma acc update self(x[:n], y[:n])

  for (int i = 0; i < n; ++i) {

    ASSERT_EQ(x[i], float(i));

    ASSERT_EQ(y[i], float(i * i));

  }


#pragma acc parallel loop copyout(z[:n])

  for (int i = 0; i < n; ++i) z[i] = x[i] + y[i];


#pragma acc exit data delete (x[:n], y[:n])


  for (int i = 0; i < n; ++i) ASSERT_EQ(z[i], float(i * (i + 1)));



As in OpenMP, we need to use a special construct when we 
have a reduction.


Otherwise, the different cores will attempt to access and 
modify sum at the same time, which is a bug.

Reduction

sum += x[i];



Note the data create to avoid unnecessary copies.

Reduction example

  float sum = 0;

#pragma acc data create(x[:n])

  {

#pragma acc parallel loop

    for (int i = 0; i < n; ++i) x[i] = 1;

#pragma acc parallel loop reduction(+ : sum)

    for (int i = 0; i < n; ++i) sum += x[i];

  }

  for (int i = 0; i < n; ++i) ASSERT_EQ(sum, float(n));



• GPU are massively parallel processors.


• They can contain thousands of cores.


• Example: GeForce RTX 3090 Ti:  10,752 cores.


• So we need to generate as much concurrency (parallelism) 
in our code.


• Loop fusion is critical for performance when the number 
of iterations is not large enough.

collapse



• i and j loops will be merged and executed in parallel.


• Without collapse, only the i loop is parallelized while the j loop is 
executed sequentially.


• collapse allows generating n*n parallel threads instead of just n.


• This can improve performance significantly.

for loop with collapse
#pragma acc parallel loop collapse(2)

  for (int i = 0; i < n; ++i) {

    for (int j = 0; j < n; ++j) {

      z[i * n + j] = x[i * n + j] + y[i * n + j];

    }

  }



Complete example with collapse
#pragma acc enter data create(x[:n * n], y[:n * n])

#pragma acc parallel loop collapse(2)

  for (int i = 0; i < n; ++i)

    for (int j = 0; j < n; ++j) {

      x[i * n + j] = i * n + j;

      y[i * n + j] = i - j;

    }


#pragma acc update self(x[:n * n], y[:n * n])

  for (int i = 0; i < n * n; ++i) ASSERT_EQ(x[i], float(i));

  for (int i = 0; i < n; ++i)

    for (int j = 0; j < n; ++j) ASSERT_EQ(y[i * n + j], float(i - j));


#pragma acc parallel loop collapse(2) copyout(z[:n * n])

  for (int i = 0; i < n; ++i)

    for (int j = 0; j < n; ++j) z[i * n + j] = x[i * n + j] + y[i * n + j];


#pragma acc exit data delete(x[:n * n], y[:n * n])

  for (int i = 0; i < n; ++i)

    for (int j = 0; j < n; ++j) ASSERT_EQ(z[i * n + j], float(i * (n + 1)));



Let’s look at a more complex real-life application.


We want to model the gravitational interactions between n 
bodies with mass.


This is similar to modeling the motions of the planets around 
the sun in the solar system.

n body problem



We start from   .


The acceleration is given by the gravitational force:


	 	

Fi = mi ai

Fi = mi ∑
j≠i

mj
rj − ri

∥rj − ri∥3
2

Gravitational force



	 	 


Equations of motion: 


	 	

Fi = mi ∑
j≠i

mj
rj − ri

∥rj − ri∥3
2

d2ri

dt2
= ∑

j≠i

mj
rj − ri
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Equations of motion



• We numerically solve these equations using the velocity 
Verlet time integrator.


• It’s not very accurate, but it remains stable over many 
time steps.


• This is a two-step method.

Time integrator



• Step 1:  advance the velocity


	 	 	 


• Step 2:  advance the position


	 	 	 


• Repeat

vn+1
i = vn

i + Δt ∑
j≠i

mj
rj − ri

∥rj − ri∥3
2 n

rn+1
i = rn

i + Δt vn+1
i

Velocity Verlet



Force computation

  for (int i = 0; i < n; i++) {

    real fx, fy, fz; fx = fy = fz = 0;

    for (int j = 0; j < n; j++) {

      real3 ff = forceComputation(pos[i].x, pos[i].y, pos[i].z, 

                                  pos[j].x, pos[j].y, pos[j].z, pos[j].w);

      fx += ff.x;

      fy += ff.y;

      fz += ff.z;

    }

    force[i].x = fx;

    force[i].y = fy;

    force[i].z = fz;

  }

Demo: nbody.ipynb



Time step

  for (int i = 0; i < n; i++) {

    // acceleration = force / mass;

    // new velocity = old velocity + acceleration * deltaTime

    vel[i].x += force[i].x * dt;

    vel[i].y += force[i].y * dt;

    vel[i].z += force[i].z * dt;


    // new position = old position + velocity * deltaTime

    pos[i].x += vel[i].x * dt;

    pos[i].y += vel[i].y * dt;

    pos[i].z += vel[i].z * dt;

  }

Demo: nbody.ipynb



Time integration

  for (int i = 0; i < iterations; i++) {

    seqIntegrate(pos, vel, force, dt, n);

  }

Demo: nbody.ipynb



• Optimize the movement of data by reducing memory 
copies between host and device.


• Only done before the iterations start and after they are 
complete.

Parallel time stepping loop

#pragma acc data copy(pos[:n], vel[:n]) copyout(force[:n])

  for (int i = 0; i < iterations; i++) {

    integrate(pos, vel, force, dt, n);

  }



Nested parallel loops with reduction
#pragma acc parallel loop

  for (int i = 0; i < n; i++) {

    real fx, fy, fz;

    fx = fy = fz = 0;

#pragma acc loop reduction(+ : fx, fy, fz)

    for (int j = 0; j < n; j++) {

      real3 ff = forceComputation(pos[i].x, pos[i].y, pos[i].z, pos[j].x,

                                  pos[j].y, pos[j].z, pos[j].w);

      fx += ff.x;

      fy += ff.y;

      fz += ff.z;

    }

    force[i].x = fx;

    force[i].y = fy;

    force[i].z = fz;

  }

Demo: nbody.ipynb



Parallel time step

#pragma acc parallel loop

  for (int i = 0; i < n; i++) {

    vel[i].x += force[i].x * dt;

    vel[i].y += force[i].y * dt;

    vel[i].z += force[i].z * dt;

    pos[i].x += vel[i].x * dt;

    pos[i].y += vel[i].y * dt;

    pos[i].z += vel[i].z * dt;

  }

Demo: nbody.ipynb



Performance results

We only use a single CPU 
thread on Google compute.



Accuracy

Roundoff errors between CPU 
and GPU in single precision



We hope you enjoyed this workshop!


