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Physics-informed machine learningPhysics-informed machine learning
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Physics-informed learning leverages:

Data from experiments and/or high-!delity computer
simulations
Physics knowledge in the form of constraints
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Examples of constraintsExamples of constraints

Equality:
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Di"erential equations:
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Assume we are given  and  and want to compute .
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We may be given some data: .

Conventional ML: DNN model 
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How can we leverage our PDE?
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Add a penalty term:
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A simple idea but with some interesting consequences.

If you have limited observation data , the PDE can be used
to impose additional constraint on the model .

This leads to more robust training and more accurate DNN
models.
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The model can easily incorporate data measured at irregular
locations ( ) or times ( ).
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Initial conditions and boundary conditions are less relevant.

With this method you can !nd approximate solutions of

if you are given enough observations  even
without boundary conditions.without boundary conditions.

12 / 19



This is much harder to do with a traditional scheme like
!nite-di"erence where boundary conditions are expected.
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How would we solve

using a convention numerical solver?
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In general, numerical solvers rely on a grid or a discretization
of the domain using a mesh.

Take for example:
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Approximate the 2nd order derivative using the !nite-
di"erence scheme:

 is an approximation of  at .

 is the grid size.
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Then, given , solve for 

This is a linear system.
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PhysML uses a di"erent approach.

It relies on the fact the DNNs can be easily di"erentiated.
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We will explore this idea in the next lecture video.
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