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Recap: Inverse Problem in Heat Transfer

Goal: calibrate a and b from u0(t) = u(0, t)

κ(x) = a + bx
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Mathematical Points of View

This problem is a standard inverse problem. We can formulate the
problem as a PDE-constrained optimization problem

min
a,b

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κ(0)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]

κ(x) = ax + b
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Inverse Modeling

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.
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Parameter Inverse Problem

The problem we consider so far falls into the category of parameter
inverse problem, where the unknown is one or more parameters.

min
a,b

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κ(0)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]

κ(x) = ax + b
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Function Inverse Problem: Independent of State Variables

Another wide category of inverse problem is the so called function
inverse problem, where the unknown is a function.

First let us consider the case where κ is independent of the state
variable u.

min
κ(x)

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κ(0)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]
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Function Inverse Problem: Dependent on State Variables

Another interesting scenario is that κ is dependent on u.

min
κ(x ,u)

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κ(x , u)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κ(0, u(0))
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]
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Stochastic Inverse Problem

In the fourth category, the unknown is a random variable κ($), where
$ is the outcome in the probability space.

min
κ($)

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κ($)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κ($)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]
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Four Types of Inverse Problems

Parameter Inverse Problem. The unknowns are constant scalars,
vectors, matrices, or tensors. κ(x) = a + bx .

Function Inverse Problem. The unknowns are functions:

The unknown function is independent of state variables. No functional
form of κ(x) is given.
The unknown function is dependent on state variables. No functional
form of κ(x , u) is given.

Stochastic Inverse Problem. The unknown is a random variable.
κ($).

This lecture: function inverse problem.
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Functional Forms

The key to solve function inverse problem is to parametrize the
unknown function κ(x) or κ(x , u) using a functional form

κ(x) ≈ κθ(x) κ(x , u) ≈ κθ(x , u)

min
θ

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κθ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κθ(x)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]

Let’s see a few functional form examples.

CME 216 Inverse Problem 13 / 50



Piecewise Linear Function

Linear combination of piecewise linear basis functions (“hat
functions”).

The building bricks of finite element analysis (FEA); FEA is the
workhorse of many engineering applications (solid mechanics,
structural engineering, etc.).

κθ(x) =
n∑

i=1

ciϕi (x) θ = {ci}ni=1
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Radial Basis Function

A radial basis function depends only on the radial distance from the
“center” vi (σ is the shape parameter)

ϕi (x) = gσ(‖x − vi‖)

Linear combination of radial basis functions

κθ(x) =
n∑

i=1

ciϕi (x) θ = {ci}ni=1

CME 216 Inverse Problem 15 / 50



Other Classical Function Approximators

Most classical function approximators are generalized linear models.
Consider the 1D case

κθ(x) =
n∑

i=1

ciϕi (x) θ = {ci}ni=1

Polynomial regression
ϕi (x) = x i−1

Chebyshev polynomials

ϕi (x) =


cos
(
i arccos x

)
, if |x | ≤ 1

cosh
(
i arcosh x

)
, if x ≥ 1

(−1)i cosh
(
i arcosh(−x)

)
, if x ≤ −1

B-splines
ϕi (x) = Bi,p(x)
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Neural Networks

Feed-forward neural network

y1 = tanh(W1x + b1)

y2 = tanh(W2y1 + b2)

. . .

yn−1 = tanh(Wn−1yn−2 + bn−1)

y =Wnyn−1 + bn


⇒ y = κθ(x)

θ = [W1, b1,W2, b2, . . . ,Wn, bn]

It is another function approximator.

It is NOT a linear combination of basis functions: composition of
linear functions and nonlinear activation function.

CME 216 Inverse Problem 17 / 50



Neural Networks

For generalized linear models, the number of coefficients typically
grows exponentially in the dimension d .

Implementing high dimensional generalized linear models is nontrivial,
but it’s often easier to extend neural networks to high dimensional
input/output space.
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Neural Networks

Neural network is adaptive to discontinuities.
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Neural Networks

Neural network is robust to noise. Left: NN; right: RBF.
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Neural Networks

Quasi-Newton optimization (when it is affordable) is more efficient
than stochastic gradient descent methods. Left: BFGS; right: SGD.
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Take-Home Messages

Neural network is easily extended to high dimensions.

Neural network exhibits adaptiveness for discontinuous functions,
compared to function approximators with fixed basis functions.

Neural network is more robust to noise than traditional global basis
functions such as radial basis functions.

(Quasi-)second-order optimizers converge faster and are more stable
than stochastic gradient descent methods, as long as you can afford
the computational and memory cost.
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Use Neural Networks to Parametrize Unknown Functions

Substitute κ(x) with a neural network κθ(x), and then solve the
PDE-constrained optimization problem:

min
θ

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κθ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κθ(0)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]

Major technical difficulty: how to train the neural networks (estimate
θ)?
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Computational Graph

The computational graphs of a neural network and a numerical solver
are coupled.

Training Neural Networks: estimating the weights and biases of the
neural network W , b by running gradient descent on the
computational graph.
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Computational Graph for Numerical Schemes

The discretized optimization problem is

min
θ

m∑
k=1

(uk1 − u0((k − 1)∆t))2

s.t. A(θ)Uk+1 = Uk + F k+1, k = 1, 2, . . . ,m

U0 = 0

The computational graph for the forward computation (evaluating the
loss function) is
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Direct Training

If the input and output pairs

{(ui , xi ), κi}ni=1

to κθ(u, x) are available, we can train the neural network using the
standard supervised learning method

min
θ

n∑
i=1

(κθ(ui , xi )− κi )2

Pros:

Extremely easy to implement using a deep learning software.
No insight from the PDE is required.

Cons:

Input-output pair data may not be available.
Leads to nonphysical κθ by ignoring the PDE.
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Residual Minimization

Assumption: the full field data of the state variable u(x , t) are
available. Possible in laboratories.

Solve an unconstrained optimization problem:

min
θ

∑
j

n∑
i=1

(
∂u

∂t

∣∣∣
x=xi ,t=tj

− (κθ(x)∆u + f )
∣∣∣
x=xi ,t=tj

)2
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Residual Minimization

Pros:

No insight is required into numerical solvers; however, insight into the
PDE is required.
Do not require input-output pair data.

Cons:

Full field data is required.
Does not enforce the PDE constraints (the residual may not be zero
due to local minimum).
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Penalty Method

Solve the constrained optimization problem using the penalty method

min
u,θ

∫ t

0
(u(0, t)− u0(t))2dt

+ λ1

∫ t

0

∫ 1

0

(
∂u(x , t)

∂t
− κθ(x , u)∆u(x , t)− f (x , t)

)2

dtdx

+ λ2

∫ t

0

∫ 1

0

(
−κθ(x , u)

∂u(0, t)

∂x

)2

dtdx

+ λ3

∫ t

0
u(1, t)2dt + λ4

∫ 1

0
u(x , 0)2dx

Here λ1, λ2, λ3 and λ4 are positive penalty parameters.
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Penalty Method

Pros:

No insight is required into numerical solvers; however, insight into the
PDE is required.
Do not require input-output pair data.
Do not require knowing u everywhere (a.k.a., sparse observations)

Cons:

The number of free optimization variables increase by the degrees of
freedom (DOF) of state variable. This may be an issue for dynamic
problems, where the DOF is very large (solution vectors at each time
step must be added to free optimization variables).
Does not enforce the PDE constraints.
Selecting appropriate λi ’s is challenging.
Convergence is an issue for stiff problems.
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Physics Constrained Learning

An efficient and powerful approach for
automatic differentiation through implicit numerical schemes

Physics constrained learning (PCL) solves for u first in the PDE
constrained optimization.

Step1 Solve for u

∂u(x , t)

∂t
= κθ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

−κθ(x)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]

u = uθ(x , t)
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Physics Constrained Learning

Step2 Solve the unconstrained optimization problem

min
θ

L̃h(θ) :=

∫ t

0
(uθ(0, t)− u0(t))2dt

This step requires computing the gradients

∂L̃h(θ)

∂θ

However, we do not have an explicit expression of uθ in terms of θ.
Challenge: how to compute the gradient efficiently and automatically in a
computational graph?
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Physics Constrained Learning

Let’s consider a simple example

min
θ
‖u − u0‖2

s.t. B(θ)u = y

By definition:
L̃h(θ) := ‖uθ − u0‖2

where uθ is the solution to

B(θ)u = y
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Recap: Implicit Function Theorem

Consider a function f : x 7→ y , implicitly defined by

x3 − (y3 + y) = 0

Treat y as a function of x and take the derivative on both sides

3x2 − 3y(x)2y ′(x)− y ′(x) = 0

Rearrange the expression and we obtain

y ′(x) =
3x2

3y(x)2 + 1
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Physics Constrained Learning

1

∂L̃h(θ)

∂θ
= 2(uθ − u0)T

∂uθ
∂θ

2 To compute ∂uθ
∂θ , consider the PDE constraint (θ is a scalar)

B(θ)uθ = y

Take the derivative with respect to θ on both sides

∂B(θ)

∂θ
uθ + B(θ)

∂uθ
∂θ

= 0⇒ ∂uθ
∂θ

= −B(θ)−1
∂B(θ)

∂θ
uθ

3 Finally,
∂L̃h(θ)

∂θ
= −2(uθ − u0)TB(θ)−1

∂B(θ)

∂θ
uθ
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Physics Constrained Learning

1 Remember: in reverse-mode AD, gradients are always
back-propagated from downstream (objective function) to upstream
(unknowns).

2 The following quantity is computed first:

gT = 2(uθ − u0)TB(θ)−1

which is equivalent to solve a linear system

B(θ)Tg = 2(uθ − u0)

3 In the gradient back-propagation step, a linear system with an adjoint
matrix (compared to the forward computation) is solved.

4 Finally,

∂L̃h(θ)

∂θ
= −2(uθ − u0)TB(θ)−1

∂B(θ)

∂θ
uθ = −gT ∂B(θ)

∂θ
uθ
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Physics Constrained Learning

There is a trick for evaluating gTBuθ; consider that g is independent
of θ in the computational graph, then

gT ∂B(θ)

∂θ
uθ =

∂(gTB(θ)uθ)

∂θ

gTB(θ)uθ is a scalar, thus we can apply reverse-mode AD to
compute gTB(θ)uθ.

Declaring that a variable is independent can be done using
tf.stop gradient in TensorFlow or independent in ADCME.
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Physics Constrained Learning

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that in the forward computation, we solve for uh = Gh(θ) in
Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+
∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0⇒

∂Gh(θ)

∂θ
= −

(∂Fh(θ, uh)

∂uh

)−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=
∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

(∂Fh(θ, uh)

∂uh

∣∣∣
uh=Gh(θ)

)−1 ∂Fh(θ, uh)

∂θ

∣∣∣
uh=Gh(θ)
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Summary

We compare the residual minimization method, penalty method, and
physics constrained learning (PCL) from several aspects. We exclude the
direct training method due to its limitation to input-output pairs.
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An Overview

The ADCME library (Automatic Differentiation Library for
Computational and Mathematical Engineering) aims at general and
scalable inverse modeling in scientific computing with gradient-based
optimization techniques.
The automatic differentiation engine: TensorFlow static graph mode.
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How ADCME works?

Uses TensorFlow for computational graph-based optimization and
generation of the computational graph for calculating gradients.
Provides optimized C++ kernels and interfaces that are essential for
scientific computing. Featured modules:

Sparse Linear Algebra Library.
Custom Optimizer, such as Ipopt and NLopt.
Neural Network with Tangent Matrices (sensitivity). See fc for details.
Probabilistic Metrics for stochastic inverse problems, such as dtw and
sinkhorn.
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Featured Applications (Optional)

Before we have some hands-on experience with inverse modeling using
ADCME, let’s first see some applications.
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ADSeismic.jl: A General Approach to Seismic Inversion

Solve seismic inversion problems within a unified framework.
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FwiFlow.jl: Coupled Full Waveform Inversion for
Subsurface Flow Problems

Estimating hydrological properties from high resolution geological
data (e.g., seismic data).
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NNFEM.jl: Robust Constitutive Modeling

Modeling constitutive relations in dynamic structural equations using
neural networks.

A finite element library built on computational graph.

Image source: http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
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ADCME Example

Hands-on Example

CME 216 Inverse Problem 48 / 50



Outline

1 Inverse Problem

2 Neural Networks

3 Training Algorithms

4 ADCME

5 Conclusion

CME 216 Inverse Problem 49 / 50



Conclusion

What’s covered in this lecture
Four types of inverse problems:

Parameter inverse problem;
function inverse problem (covered in this lecture);
Stochastic inverse problem.

Neural networks as a function approximation scheme;
Training algorithms:

Direct training;
Residual minimization;
Penalty method;
Physics constrained learning.

ADCME: applications and hands-on examples
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