CME 216, ME 343 - Spring 2020
Eric Darve, ICME

€ Stanford University

1719



In this lesson we will learn about gradient descent methods.

Many algorithms that we will present are heuristics. Finding
the best method for your problem often requires trial and
error.

2/19



We have seen that the most basic method to train is the
method of steepest descent or gradient descent:

AW = —(XVWL

where W are the weights and L is the loss function.

3/19



Typically we have a large training set
Xz', 7 = 1,...,m

The loss function can be written as

L) = 31X W)

4/19



In many cases the training set is very large.
In principle, the "correct" method is to calculate
VwL
by computing each partial gradient
Vwl(Xi; W)
and summing all the terms together.

5/19



However, going through the entire training data can take a
while and also the DNN is not updated using we have
computed all the Vl;.

This has led to the idea of stochastic gradient descent.

6/19



In this method we don't wait until we have computed all the
terms to apply the gradient.

There are different ways of implementing this.

7719



Assume that we randomly select a fraction 7 of the training
samples and compute

rm

L(W) =3 (X, W)
k=1

8/19



Each set {i } is called a batch.

9/19



Then we update the weights using
AW = —aVL,.(W)

and repeat this, drawing a new set of rm samples.

10/19



This method has several advantages.

First, we can update the network even after processing only
rm training points.

11719



Assume that r = 1/4 for example.

One "epoch" corresponds to evaluating L for all m training
points.

12719



In traditional gradient descent, we update the DNN weights
only once per epoch.

That is, after processing all training samples, we apply the
gradient once.

13719



In stochastic gradient descent, we will update the DNN
weights

—
.

times during each epoch.

14719



If we assume that each gradient calculation using samples
{’ik}, i:1,...,rm

is reasonably accurate, the convergence can be expected to
be much faster.

15719



Basically in SGD, we are updating the DNN weights more
often so we typically require fewer epochs to converge.

16 /19



The second reason why SGD is more efficient is that it
introduces a stochastic component during the training
because

rm

VL(W) =) Vi(X;; W)~ VL(W)
k=1

17719



This may help the algorithm converge and get away from
points where V L gets small and convergence slows down.

Noise actually helps!

18719



We will discuss convergence and the effect of noise in more
details in the next video.

19719



