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In this lesson we will learn about gradient descent methods.

Many algorithms that we will present are heuristics. Finding
the best method for your problem often requires trial and
error.
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We have seen that the most basic method to train is the
method of steepest descent or gradient descent:

AW = —(XVWL

where W are the weights and L is the loss function.
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Typically we have a large training set
Xz', 7 = 1,...,m

The loss function can be written as

L) = 31X W)
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In many cases the training set is very large.
In principle, the "correct" method is to calculate
VwL
by computing each partial gradient
Vwl(Xi; W)
and summing all the terms together.
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However, going through the entire training data can take a
while and also the DNN is not updated using we have
computed all the Vl;.

This has led to the idea of stochastic gradient descent.
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In this method we don't wait until we have computed all the
terms to apply the gradient.

There are different ways of implementing this.
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Assume that we randomly select a fraction 7 of the training
samples and compute

rm

L(W) =3 (X, W)
k=1
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Each set {i } is called a batch.
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Then we update the weights using
AW = —aVL,.(W)

and repeat this, drawing a new set of rm samples.
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This method has several advantages.

First, we can update the network even after processing only
rm training points.

11719



Assume that r = 1/4 for example.

One "epoch" corresponds to evaluating L for all m training
points.
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In traditional gradient descent, we update the DNN weights
only once per epoch.

That is, after processing all training samples, we apply the
gradient once.
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In stochastic gradient descent, we will update the DNN
weights

—
.

times during each epoch.
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If we assume that each gradient calculation using samples
{’ik}, i:1,...,rm

is reasonably accurate, the convergence can be expected to
be much faster.
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Basically in SGD, we are updating the DNN weights more
often so we typically require fewer epochs to converge.

16 /19



The second reason why SGD is more efficient is that it
introduces a stochastic component during the training
because

rm

VL(W) =) Vi(X;; W)~ VL(W)
k=1
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This may help the algorithm converge and get away from
points where V L gets small and convergence slows down.

Noise actually helps!
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We will discuss convergence and the effect of noise in more
details in the next video.
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