
CME 216, ME 343 - Spring 2020CME 216, ME 343 - Spring 2020

Eric Darve, ICMEEric Darve, ICME

1 / 21



Let's talk about convergence and why it may slow down.

2 / 21



In gradient methods, there are basically two scenarios that
could slow down convergence

1. Presence of local minima; the algorithm cannot distinguish
between a local or a global minimum and may therefore
get stuck near a local minimum.

2. Presence of saddle points.
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A point where the gradient is zero is a critical point.

A saddle point is a critical point, but it is not a local
extremum.
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Mathematically, a critical point may also be a point where the
function is not di!erentiable.

But we will assume that  is smooth everywhere for this
discussion.
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At a critical point, we can consider the Hessian of  and its
eigenvalues.

All the eigenvalues are positive: local minimum.
All the eigenvalues are negative: local maximum.
If some of the signs are positive and others negative:
saddle point.
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In general it is hard to say whether one may encounter more
frequently local minima or saddle points.

However, in DNN, we have many weights  so  is a very
high dimensional function.

10 / 21



Assume we have  weights to train.

The Hessian has  eigenvalues.

Let's assume for the sake of the argument that the sign of the
eigenvalues are random.
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The probability that all signs are positive is only .
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So in fact local minima are quite rare.

Of course, there is at least one, the global minimum.

But roughly we should be mostly concerned about saddle
points.
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In principle, in gradient based methods, saddle points are not
really a problem.

Unless we approach the saddle point strictly along a line that
follows the positive eigenvalue directions, we will eventually
fall down away from the critical point.
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However, in practice, this is very bad.

In particular, near the saddle point the gradient becomes
very small.
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This means that near a saddle point we tend to take very
small steps and more very slowly.

This goes on until we are su"ciently far from the saddle
point that convergence resumes.
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This is probably one of the main reasons the loss converges
slowly sometimes.

This is in addition to the problem of sti!ness which leads to
very small steps.
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This is a distinct issue however. The problem is not that a
small learning rate  is required.

The problem is that the gradient itself becomes small.
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SGD is a good method in part because its stochastic
component allows moving away from the saddle point and
resume convergence in an area where the gradient is large
again.
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def sgd(W, lr, batch_size):
    W -= lr * W.grad / batch_size
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