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There are several schemes that were designed to improve
convergence.

One of the simplest trick is to use the so-called momentum.
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One way to explain momentum is to go back to ordinary
differential equations.
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Assume we consider the following ODE:

dz

s + f(¢)

a > 0
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To solve this ODE, introduce y(t) with

z(t) = y(t)e ™
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Differential calculus:
33, + ar = (yl L ay)e—at 14 aye—at _ yle—at
From the ODE:

ye ™ = f(t)
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For long times t:

r(t) ~ /t e~ %) £(5)ds

e when a large: only values of f(s) with s ~ ¢ have a
significant weight

e when a is small: x is close to & j;t_T f(s)ds; x(t) varies
slowly.

8/17



Discretize in time:

dx Tpil — Tp
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Update equation:
T,i1 = (1 — aAt)x, + At f,
General form:

Tnil = P+ fn, —1<B<1
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Ln+l1 = ,an + fn

Using the same strategy we used to solve the ODE we can
find the general solution:

n—1
zn =z0B" + ) B fo 1k
k=0
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As before;

e when B = 1: x,, varies slowly and we sum f; over a large
interval
e when |B| small: only the value of f,,_1 has a large weight

and x,, varies more rapidly.
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This strategy can be applied to integrate the gradient.
In the momentum method we use the following equation
m < Bm — aVwlL

AW =m
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For a large number of steps n.:
n—1

m= —« Z Bk Ly
k=0

Take B8 = 0.9. We can get a huge boost.

14717



Towards the end of the convergence when the gradient is
nearly constant:

aVWLn
1-p

n—1
m~ —« E B L, = —
k=0

m= — 1OaVWLn
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m~ —10aVwL,
AW =m

It's like converging 10 times faster to the solution!
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def sgd_momentum(W, m, lr, beta, batch_size):
m = beta *m + 1Ir * W.grad / batch_size
W -=m
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