CME 216, ME 343 - Spring 2020
Eric Darve, ICME

€ Stanford University

1734

Adagrad is a method that attempts to adaptively change the
learning rate.

It does so by using a different learning rate per parameter
w;.

2/ 34

Adagrad is a heuristic.

It will not yield an acceleration on all problems.

3/34

But let us see an example where Adagrad will work.

4/ 34

Let's consider a quadratic approximation of the loss function:

1
L(X)==XTHX
2

he gradient is H X.

5/34

There are some situations where the matrix H may not be
properly balanced.

Remember that H is the Hessian of a general loss function L
so we have no control over its properties.

6/ 34

One way to think of a matrix that is not balanced is to define
some) < B8 < 1and

[D,B]zz — ,Bi_l, 1=]., e oo

7 /34

Then assume that our Hessian is Hﬂ with:
Hg — DgHDg

H is a symmetric positive definite matrix with a condition
number close to 1.

8/ 34

Hg = DgHDg
As B goes to 0, the matrix becomes increasingly imbalanced.

Some of the rows/columns become very small.

9/34

Gradient methods will typically converge fast with H.

However, they will struggle with Hg because it is ill-
conditioned due to the scaling matrix Dg.

Adagrad is able to overcome some of the difficulties with Hg.

10/ 34

AX = —aHpX

Ax,, becomes very small as 8 — 0.

11734

We have seen previously how we could use an
eigendecomposition of Hg and look at the convergence of

individual modes
Z=U'X
A = —alNZ

12/ 34

Remember how we said that ideally o =)\Z-_l.

In this case, we can do something close.

We will use the adaptive learning rates of Adagrad.

13/ 34

Hgz =UAUT

We are not going to prove this, but because of the scaling
matrix D we have that:

e U is close to identity

®)\z X 162(i_1)

14/ 34

As predicted, some of the modes are going to converge very
slowly with a conventional learning rate.

Pick ¢ =)\1_1. Mode m is updated using

Azn — An Zn = _/Bz(n_l)zn
A1

This is very slow.

15734

Let's consider again the update equation for X:

AX = —aqUAUTX

16/ 34

What can we do without computing H and its
eigendecomposition (U, A)?

17734

There is an approximate but simple strategy:

OL .
= |[[HX);| =~ 8" || X
oz, | = IHXL ~ B {1 X,
We could choose as a learning rate for component %:
Q
Q<

OL
3$i

18/ 34

That would not really work because VL — 0.

Adagrad uses the following formula instead:
OLy \ 2
S; =

where k is the batch index.

19/ 34

The update rule is then

A:Ez'

20/ 34

The € is a regularizing factor that accounts for cases where s;
may become too small, which can happen at the beginning,
INn some rare cases.

21/ 34

Although the strategy is simple, it provides a substantial
acceleration in our case.

The formula is

o oL o
\V/8i + € 0x; VS; + €

22 /34

Using matrix notation,
XD _ x®) — _oDHX®
X — (I — aDH)XW™

23/ 34

We can solve for step k in terms of the initial value:
X® = (I —aDH)*X©

where D is a diagonal matrix with

B 1
VSi + €

d;;

24 / 34

In Adagrad, s; can increase quite a bit.

25/ 34

Recall that:

(8Lk)2
S; = E

: 2 8332

If convergence is slow, s; grows.

We will fix this problem with RMSProp.

20/ 34

If convergence is reasonably fast (or we use RMSProp), we
can approximate s; by

S; X IBZZ'

27134

In that case, we can prove the following result.

The largest eigenvalue of I — aH is
~1 _ IBZ(n—l)
while for Adagrad with I — aDH, itis
~1— !

28 /34

This implies that the number of iterations has been reduced

by
(5)"

If 8 = 0.9 and n = 100, that number is close to 30k.

29/ 34

We ran a small benchmark in the notebook.
We picked: 8 = 0.1 and n = 4.

The speedup is theoretically about 1,000 in this case.

30/ 34

error

10

100 1000

iteration

10k

Gradient Descent

—— Adagrad

100k

31734

Of course in practice things are not as simple.

We can get slow convergence even if H is perfectly balanced
and all components of the gradients are of similar
magnitudes.

32/ 34

But there are many applications where some components of
the gradient are systematically smaller than over
components.

Adagrad will improve convergence in these cases.

33/34

def adagrad(W, s, 1lr, batch_size):
eps_stable = 1e-7
g = W.grad / batch_size
s += square(g) # element-wise square
W -=1r x g / sqrt(s + eps_stable) # element-wise division

34 /34

