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Adagrad is a method that attempts to adaptively change the
learning rate.

It does so by using a di!erent learning rate per parameter 
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Adagrad is a heuristic.

It will not yield an acceleration on all problems.
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But let us see an example where Adagrad will work.
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Let's consider a quadratic approximation of the loss function:

The gradient is .
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There are some situations where the matrix  may not be
properly balanced.

Remember that  is the Hessian of a general loss function 
so we have no control over its properties.
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One way to think of a matrix that is not balanced is to de"ne
some  and
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Then assume that our Hessian is  with:

 is a symmetric positive de"nite matrix with a condition
number close to 1.
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As  goes to 0, the matrix becomes increasingly imbalanced.

Some of the rows/columns become very small.
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Gradient methods will typically converge fast with 

However, they will struggle with  because it is ill-
conditioned due to the scaling matrix .

Adagrad is able to overcome some of the di#culties with .
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 becomes very small as .
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We have seen previously how we could use an
eigendecomposition of  and look at the convergence of
individual modes
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Remember how we said that ideally .

In this case, we can do something close.

We will use the adaptive learning rates of Adagrad.
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We are not going to prove this, but because of the scaling
matrix  we have that:

 is close to identity
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As predicted, some of the modes are going to converge very
slowly with a conventional learning rate.

Pick . Mode  is updated using

This is very slow.
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Let's consider again the update equation for :
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What can we do without computing  and its
eigendecomposition ?
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There is an approximate but simple strategy:

We could choose as a learning rate for component :
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That would not really work because .

Adagrad uses the following formula instead:

where  is the batch index.
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The update rule is then
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The  is a regularizing factor that accounts for cases where 
may become too small, which can happen at the beginning,
in some rare cases.
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Although the strategy is simple, it provides a substantial
acceleration in our case.

The formula is
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Using matrix notation,
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We can solve for step  in terms of the initial value:

where  is a diagonal matrix with
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In Adagrad,  can increase quite a bit.
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Recall that:

If convergence is slow,  grows.

We will "x this problem with RMSProp.
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If convergence is reasonably fast (or we use RMSProp), we
can approximate  by
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In that case, we can prove the following result.

The largest eigenvalue of  is

while for AdagradAdagrad with , it is
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This implies that the number of iterations has been reduced
by

If  and , that number is close to 30k.
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We ran a small benchmark in the notebook.

We picked:  and .

The speedup is theoretically about 1,000 in this case.
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Of course in practice things are not as simple.

We can get slow convergence even if  is perfectly balanced
and all components of the gradients are of similar
magnitudes.
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But there are many applications where some components of
the gradient are systematicallysystematically smaller than over
components.

Adagrad will improve convergence in these cases.
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def adagrad(W, s, lr, batch_size):
    eps_stable = 1e-7
    g = W.grad / batch_size
    s += square(g) # element-wise square
    W -= lr * g / sqrt(s + eps_stable) # element-wise division
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