
CME 216, ME 343 - Spring 2020CME 216, ME 343 - Spring 2020

Eric Darve, ICMEEric Darve, ICME

1 / 34



Adagrad is a method that attempts to adaptively change the
learning rate.

It does so by using a di!erent learning rate per parameter 

2 / 34



Adagrad is a heuristic.

It will not yield an acceleration on all problems.

3 / 34



But let us see an example where Adagrad will work.

4 / 34



Let's consider a quadratic approximation of the loss function:

The gradient is .

5 / 34



There are some situations where the matrix  may not be
properly balanced.

Remember that  is the Hessian of a general loss function 
so we have no control over its properties.

6 / 34



One way to think of a matrix that is not balanced is to de"ne
some  and

7 / 34



Then assume that our Hessian is  with:

 is a symmetric positive de"nite matrix with a condition
number close to 1.

8 / 34



As  goes to 0, the matrix becomes increasingly imbalanced.

Some of the rows/columns become very small.

9 / 34



Gradient methods will typically converge fast with 

However, they will struggle with  because it is ill-
conditioned due to the scaling matrix .

Adagrad is able to overcome some of the di#culties with .

10 / 34



 becomes very small as .

11 / 34



We have seen previously how we could use an
eigendecomposition of  and look at the convergence of
individual modes

12 / 34



Remember how we said that ideally .

In this case, we can do something close.

We will use the adaptive learning rates of Adagrad.

13 / 34



We are not going to prove this, but because of the scaling
matrix  we have that:

 is close to identity

14 / 34



As predicted, some of the modes are going to converge very
slowly with a conventional learning rate.

Pick . Mode  is updated using

This is very slow.

15 / 34



Let's consider again the update equation for :

16 / 34



What can we do without computing  and its
eigendecomposition ?

17 / 34



There is an approximate but simple strategy:

We could choose as a learning rate for component :

18 / 34



That would not really work because .

Adagrad uses the following formula instead:

where  is the batch index.

19 / 34



The update rule is then

20 / 34



The  is a regularizing factor that accounts for cases where 
may become too small, which can happen at the beginning,
in some rare cases.

21 / 34



Although the strategy is simple, it provides a substantial
acceleration in our case.

The formula is

22 / 34



Using matrix notation,

23 / 34



We can solve for step  in terms of the initial value:

where  is a diagonal matrix with

24 / 34



In Adagrad,  can increase quite a bit.

25 / 34



Recall that:

If convergence is slow,  grows.

We will "x this problem with RMSProp.

26 / 34



If convergence is reasonably fast (or we use RMSProp), we
can approximate  by

27 / 34



In that case, we can prove the following result.

The largest eigenvalue of  is

while for AdagradAdagrad with , it is

28 / 34



This implies that the number of iterations has been reduced
by

If  and , that number is close to 30k.

29 / 34



We ran a small benchmark in the notebook.

We picked:  and .

The speedup is theoretically about 1,000 in this case.

30 / 34



1 10 100 1000 10k 100k
2

5

0.1

2

5

1

2 Gradient Descent
Adagrad

iteration

er
ro

r

31 / 34



Of course in practice things are not as simple.

We can get slow convergence even if  is perfectly balanced
and all components of the gradients are of similar
magnitudes.

32 / 34



But there are many applications where some components of
the gradient are systematicallysystematically smaller than over
components.

Adagrad will improve convergence in these cases.

33 / 34



def adagrad(W, s, lr, batch_size):
    eps_stable = 1e-7
    g = W.grad / batch_size
    s += square(g) # element-wise square
    W -= lr * g / sqrt(s + eps_stable) # element-wise division

34 / 34


