
CME 216, ME 343 - Spring 2020CME 216, ME 343 - Spring 2020

Eric Darve, ICMEEric Darve, ICME

1 / 28

Adagrad can yield nice acceleration in some cases but its
formula to scale the learning rate has some issues:

2 / 28

If the convergence is slow, the gradient decays slowly.

As a result, grows, which results in small steps and further
slow down in convergence.

3 / 28

To address this issue, RMSProp uses the idea of momentum
so that the scaling factor has a more controlled growth:

4 / 28

When is small, only recent values of the gradient will
contribute.

When is close to 1, is close to

5 / 28

Another important element of RMSProp is that it helps
around saddle points.

Near saddle points, the gradient becomes very small.

By scaling with , we can get a nice boost.

6 / 28

def RMSProp(W, s, lr, beta, batch_size):
 eps_stable = 1e-7
 g = W.grad / batch_size
 s = beta * s + (1-beta) * square(g) # element-wise square
 W -= lr * g / (sqrt(s) + eps_stable) # element-wise division

7 / 28

The last method we will cover is Adam. It addresses two
limitations of RMSProp.

8 / 28

The !rst one is that it adds momentum to the gradient
calculation as well.

So momentum is applied to two places: to advance the
gradient squared and the gradient itself.

9 / 28

10 / 28

The second modi!cation has to do with initialization.

The problem with momentum is that before batch 0, all
variables are initialized to 0.

11 / 28

As a result, we tend to get small values initially.

Basically initially we only see

instead of

12 / 28

This can be made more precise with the following derivation.

We will !nd how to rescale to avoid this problem in the
simple case where we assume that the gradient is constant.

It's not perfect but it will improve the initialization bias quite a
bit.

13 / 28

Let's assume that the gradient is constant.

In that case we just want

at all steps.

14 / 28

Let's compare with what we are actually getting.

Denote the gradient and assume it is constant.

15 / 28

If we solve this equation we get, at step :

16 / 28

We chose . So, we get:

17 / 28

The scaling factor we pick is therefore:

when processing batch .

18 / 28

The !nal formulas are.

19 / 28

Gradient and gradient-squared:

20 / 28

Initialization bias:

21 / 28

Gradient step:

22 / 28

 is for the gradient momentum. It is typically chosen equal
to 0.9.

 is for the gradient squared momentum. This one is chosen
very close to 1, 0.999. This means that changes only very
slowly.

The number of steps required for changes in to be visible
is on the order of 1,000 steps.

23 / 28

def adam(W, m, s, lr, batch_size, k):
 beta1 = 0.9
 beta2 = 0.999
 eps_stable = 1e-8

 g = W.grad / batch_size

 m = beta1 * m + (1. - beta1) * g
 s = beta2 * s + (1. - beta2) * square(g)

 m_hat = m / (1. - beta1 ** k)
 s_hat = s / (1. - beta2 ** k)

 W -= lr * m_hat / (sqrt(s_hat) + eps_stable)

24 / 28

You can check these animations on the CS231n class page.

25 / 28

https://cs231n.github.io/neural-networks-3/#ada

Momentum has a close to 1, and tends to overshoot too
much.

Adagrad and RMSProp scale the gradient near the saddle
point which provides a nice boost.

26 / 28

Additional readingAdditional reading

Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization by Duchi et al., 2011
Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization, International Symposium on
Mathematical Programming 2012, by Duchi et al.

27 / 28

http://127.0.0.1:4000/me343-cme216-winter-2021/Slides_Remark/Deep_Learning/Duchi_2011.pdf
http://127.0.0.1:4000/me343-cme216-winter-2021/Slides_Remark/Deep_Learning/Duchi_slides_ISMP_2012.pdf

Qualitatively characterizing neural network optimization
problems by Goodfellow et al., ICLR, 2015
Practical Recommendations for Gradient-Based Training of
Deep Architectures by Bengio, 2013
E"cient Backprop by LeCun et al., 2012
ADADELTA: an adaptive learning rate method by Zeiler,
2012

28 / 28

http://127.0.0.1:4000/me343-cme216-winter-2021/Slides_Remark/Deep_Learning/Goodfellow_2015.pdf
http://127.0.0.1:4000/me343-cme216-winter-2021/Slides_Remark/Deep_Learning/Bengio_Gradient_Based_Training.pdf
http://127.0.0.1:4000/me343-cme216-winter-2021/Slides_Remark/Deep_Learning/Efficient_Backprop_LeCun_2012.pdf
http://127.0.0.1:4000/me343-cme216-winter-2021/Slides_Remark/Deep_Learning/Adadelta_Zeiler_2012.pdf

