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The optimizers we have seen until now belong to the class of
!rst-order optimizers.

This is because to a large extent they only rely on the
gradient of the loss function.
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For physics-informed learning, we are often interested in
converging the loss function to very small values.

This is because high-accuracy is required for the solution and
the loss function is often ill-conditioned.
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For this reason, optimizers that have improved convergence
properties are desirable.

Second order optimizers make use of information about the
Hessian to improve convergence.
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We will cover three methods:

Trust Region
BFGS; Broyden-Fletcher-Goldfarb-Shanno
L-BFGS or limited-memory BFGS
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This is a large and complex topic.

We will only cover the main ideas to give you a general sense
of how these methods work.
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Trust-region methods start from a quadratic approximation
of the loss function.

To follow the standard notations in the !eld, we use
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The minimum of that approximation is given by Newton's
point:

However,  in some cases may be too large.
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If  is too large, the quadratic approximation may no longer
be a good approximation of .

So we need to limit the size of the step  we take.
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Mathematically the problem we want to solve is:

subject to
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The simplest method to !nd an approximate solution is the
Cauchy point.

This is simply a point in the direction of the gradient that
minimizes
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Although we did use the 2nd order approximation to
estimate the Cauchy point, we are still following the gradient
vector.
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Is it possible to !nd a better approximation of

subject to
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If , then: 

Assume now that .
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Using the method of Lagrange multipliers, we !nd that at the
optimum, the gradient of the approximate loss function:

is parallel to the gradient of the constraint:
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So there is a  such that:
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Use the eigendecomposition of : .
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We look for  such that .

We get:
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Although complicated, this equation can be solved.

The solution process is facilitated by the fact that  is simply
a real number.
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scipy implementations

dogleg
trust-exact
trust-ncg
trust-krylov
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html


dogleg

Dog-leg method.

Interpolation between Cauchy-point and Newton's point
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https://docs.scipy.org/doc/scipy/reference/optimize.minimize-dogleg.html


trust-exact

Exact solution of the trust region subproblem
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https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustexact.html


trust-ncg

Conjugate Gradient iterative solution

It does not require the eigendecomposition of the Hessian.

Only matrix-vector products with  are required.
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https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustncg.html


trust-krylov

Similar to trust-ncg. Only matrix-vector products with  are
required.

The Lanczos method is used instead of the Conjugate
Gradient.

The method is slightly more expensive but is more accurate
and may converge faster.
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https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustkrylov.html


For more information see Numerical Optimization, by
Nocedal and Wright, Springer, 2nd edition
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https://www.amazon.com/Numerical-Optimization-Operations-Financial-Engineering/dp/0387303030/ref=sr_1_1?crid=36S4G2AJP8JV7&dchild=1&keywords=nocedal+wright&qid=1612048642&sprefix=nocedal%2Caps%2C234&sr=8-1

