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BFGSBFGS

This is one of the most e!cient optimizers.

It belongs to the class of quasi-Newton methods.

Instead of computing the Hessian exactly (expensive), we use
an approximation.
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The method is ingenious.

Assume we have multiple evaluations of the gradient (e.g.,
one evaluation per step).

We know that:
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This can be used to progressively approximate .
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Example: pick . Then:

We get column  of the Hessian matrix.
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We can gain information about  from di"erences like

Let's use this insight to build an algorithm to approximate 
.
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Secant equation:
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But recall that Newton's step is approximately:

So instead of working with the Hessian , it's more e!cient
to work directly with its inverse .
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The secant equation becomes:

 →
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How can we use this secant equation to approximate 
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Assume we have some approximation at step , .

We want to use

to #nd a better approximation  of .
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There are many  that will solve the secant equation.

In BFGS we solve for

subject to  and .
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BFGS solution is:
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Let's check that it is correct.
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. Multiply to the right by :
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 is a projection onto  along .
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while ‖g[k]‖ > eps:
    pk = -Hk*g[k]
    x[k+1] = x[k] + ak*pk # ak is obtained using a line search
    sk = x[k+1] - x[k]
    yk = g[k+1] - g[k]
    Update Hk using BFGS equation
    k ← k+1
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scipy optimize BFGS implementation
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https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html


For more information see Numerical Optimization, by
Nocedal and Wright, Springer, 2nd edition
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https://www.amazon.com/Numerical-Optimization-Operations-Financial-Engineering/dp/0387303030/ref=sr_1_1?crid=36S4G2AJP8JV7&dchild=1&keywords=nocedal+wright&qid=1612048642&sprefix=nocedal%2Caps%2C234&sr=8-1

