CME 216, ME 343 - Winter 2021 Eric Darve, ICME

L-BFGS

BFGS can be expensive if the space is high-dimensional. This cost can be reduced (with an approximation) using L-BFGS.

$$egin{aligned} H_{k+1}y_k &= s_k \ H_{k+1} &= (I-
ho_k s_k y_k^T) H_k (I-
ho_k y_k s_k^T) +
ho_k \end{aligned}$$

 $s_k s_k s_k^T$

Denote
$$V_k = I -
ho_k y_k s_k^T$$
. $H_{k+1} = V_k^T H_k V_k +
ho_k s_k s_k^T$

Compute $H_{k+1}q$:

$$H_{k+1} = (I -
ho_k s_k y_k^T) H_k (I -
ho_k y_k s_k^T) +
ho_k$$

$s_k s_k s_k^T$

Then repeat the same process to compute H_kq . Unroll the recurrence m times. $H_{k+1} \rightarrow H_k \rightarrow ... \rightarrow H_{k-m+1}$

```
for i = range(k, k-m, -1):
    a[i] = rho[i]*s[i].T*q
    q = q - a[i]*y[i]
r = H[k-m+1]*q
for i = range(k-m+1, k+1, 1):
    b = rho[i]*y[i].T*r
    r = r - s[i]*b + s[i]*a[i]
```

The catch is that we don't have H[k-m+1].

In L-BFGS, we approximate this term by:

$$egin{aligned} H_{k-m+1} &pprox \gamma_{k+1} I \ && \gamma_{k+1} = rac{s_k^T y_k}{y_k^T y_k} \end{aligned}$$

$$\gamma_{k+1} = rac{s_k^T y_k}{y_k^T y_k}$$

 γ_{k+1} tries to approximate the norm of H_{k+1} .

It's a crude approximation but since it is used to approximate a term far in the past, H_{k-m+1} , it often works well.

- The cost of L-BFGS is O(nm) if the Hessian has size n. BFGS has cost $O(n^2)$.
- (Exact Trust Region has cost $O(n^3)$.)
- The cost of L-BFGS is much less than BFGS if $m \ll n$.

<u>L-BFGS</u> in scipy optimize.

Let's see how this works in practice.

Physics-informed training task.

Poisson equation:

$$abla \cdot (\kappa_ heta(u)
abla u) = f(x)$$

Learn $\kappa_{\theta}(u)$ using a DNN.

But BFGS and L-BFGS require less flops.

Best method will depend on the application and many factors: accuracy, stiffness, cost of computing the Hessian, ...

For more information see <u>Numerical Optimization</u>, by Nocedal and Wright, Springer, 2nd edition

