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In this lecture we are going to look at methods to compute
the gradient of the loss function.
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As we have seen, DL problems are formulated as a problem
of minimizing a loss function  that depends on the weights
and biases of the DNN.
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To do that, we will use gradient-based algorithms. That is we
update the weights and biases using
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: weights of layer .

: biases of layer .

5 / 26



We will see more advanced optimization methods later, but
they all require the computation of the gradient of the loss
function with respect to the weights and biases.

Let's see how the gradient can be computed.

6 / 26



An e!cient algorithm has been designed for this.

It's called the back-propagation algorithm.
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As we have seen, a DNN is a function of the type

8 / 26



This corresponds to applying the non-linearity  element-
wise to a vector.
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For example: 

This corresponds to a multiplication by matrix .

Then we apply the non-linear function  element-wise.
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In this formula we are seemingly not using any bias .

But the following trick can be used:
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The bias  can be represented by adding an entry at the end
of  and appending a 1 at the end of .

So by changing our de"nition of , we can represent our DNN
using weights  only.
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This will simplify our notations in what will follow.
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Our DNN is the result of the following composition of
functions:
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We need to apply the chain rule to calculate the gradient.

It gets pretty complicated.
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So grab a pencil and paper and please follow along the
equations as we go.
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The trick is to apply the chain rule starting from the left of
this expression, progressively moving to the right.
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You could do the same thing going from the right to the left
but an analysis reveals that this is computationally more
expensive.
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Let us de"ne:
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So

Recall:
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We will use a recurrence relation.

It will start from  and will go down to .
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Let's start with

We can always assume that  is a scalar.
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We have

The trick is that  is independent of .

So  is a linear function of .

23 / 26



Since  is a scalar, the last matrix  must be a row vector.
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Let's calculate a derivative with respect to a single
component:
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Using matrix notations, this becomes

where  is a row vector.
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