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In the previous lecture, we explain the !rst step in the back-
propagation algorithm.

We will derive the general formula for all layers.
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Let us !nd the derivative with respect to  to get
started.

We have:
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Let's di"erentiate with respect to the  component of 
.

Let's denote  a matrix full of zeros with a 1 at index .
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Then

 is a diagonal matrix with entries
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The scalar  can be re-written using
vectors:

 is a row vector

 is a column vector
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Let's denote
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Using matrix notations we get

 is a column vector

 is a row vector.

 is a matrix
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Let us brie#y repeat this for  to see how this works.

We now have:
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In matrix form:

11 / 22



We can now de!ne the general formula.

There is a recurrence relation for .
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Equation for gradient with respect to matrix 
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Explicit expression for the biasExplicit expression for the bias

We previously said that the bias can be represented in this
framework by adding a 1 at the end of the activation .

With this trick, we can immediately !nd an explicit expression
for the gradient with respect to the bias.
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Gradient with respect to the biasGradient with respect to the bias
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The implementation can be done in two passes called the
forward and backward passes.
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In the following, for completeness we will reintroduce the
biases.
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Forward passForward pass

We compute all the activations.
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 goes from 1 to .

 means that  is applied element-wise to 
.
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We also need to save the values of the derivative:

 is a diagonal matrix.

20 / 22



Backward passBackward pass

For  going from  to :
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Derivatives: from  to 
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