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The loss function for classi!cation problems is usually
de!ned using the cross-entropy.

Let us review the de!nition of cross-entropy and its
interpretation.

This will require some probabilities.
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Take a distribution , which is assumed to be the true
distribution.

Take an approximation . Then the cross-entropy  is
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What is the interpretation of cross-entropy?

The name entropy comes from the de!nition of the entropy
of 
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To understand these concepts, we need to run the following
thought experiment.

Assume that we generate random samples  drawn from the
probability .
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If we number of samples  is really large, the probability of
observing the sequence  is given by
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ExplanationExplanation

The probability of seeing a sample  is  and the
number of times the sample  is going to appear is .

So, the associated probability is
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The product of these probabilities is the probability of seeing
the entire sequence.
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The entropy is then equal to the negative log of
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If we have a system where only one state is possible (very low
entropy), then
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If we have a system where all states have equal probability,
the entropy is high:

where  is the total number of states in the system.
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What is now the cross-entropy?
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We can repeat the same thought experiment with a slightly
di"erent setup.

Assume we generate the sequence  using probability .
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But  is unknown, and we only have some approximation .

Then our approximation of the probability of seeing the
sequence  is
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The log of  is the cross-entropy:
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If our guess of  is correct, we have  and the cross-
entropy will be small.

Our estimated probability  is large.

16 / 31



Note that the cross-entropy  is always greater than 
.
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If , we get

The cross-entropy is minimal.
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If our guess is wildly o", then the probability we estimate for
the sequence  will be very low.

In that case,  will be very large.
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Let's take a simple example. Let's consider a dice that has
written 6 on all its faces.

20 / 31



In that scenario, the only sequence we can generate is
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If we believe that the dice is a normal one, we will assign a
small probability to the sequence we are seeing.

We get:
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If instead, we know that only 6 can show up, we will use

, when 

, when .
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This gives us

The cross-entropy is much lower.
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For our deep learning problem, the cross-entropy can be
used as the loss function.
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Let's apply this to the classi!cation problem.

Using softmax, we get some output probabilities .
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We use the notation  and  because this is the convention
for the output variable although it represents a probability in
this case.
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The true probability in this case is often the one-hot vector.
That is, the vector

, if 

, if 

where  is a label and  is the true label associated with the
input .
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If our DNN guesses , the cross-entropy is
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If , the DNN has correctly guessed the label and its
certainty is maximum.
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If , the loss function (cross-entropy) is very large.

This is what we should expect.
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