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he loss function for classification problems is usually
defined using the cross-entropy.

Let us review the definition of cross-entropy and its
interpretation.

This will require some probabilities.
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Take a distribution p;, which is assumed to be the true
distribution.

Take an approximation g;. Then the cross-entropy H(p, q) is

H(p,q) = — Y pilogg,
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What is the interpretation of cross-entropy?

The name entropy comes from the definition of the entropy
of p

H(p) = — ) pilogp
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To understand these concepts, we need to run the following
thought experiment.

Assume that we generate random samples 12 drawn from the
probability p.
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If we number of samples IV is really large, the probability of
observing the sequence 1 is given by

H(Pz')Npi

(}
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Explanation

The probability of seeing a sample 2 = 1% is p; and the
number of times the sample ¢ is going to appear is Np;.

So, the associated probability is

(p;)"*P
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The product of these probabilities is the probability of seeing
the entire sequence.
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The entropy is then equal to the negative log of

Pa({ir}) = [](w)™®

1

1
H(p) = ——-log P ({ir}) = sz log p;
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If we have a system where only one state is possible (very low
entropy), then

— ) pilogp; =—1logl =0
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If we have a system where all states have equal probability,
the entropy is high:

— sz- logp; = —logn™! =logn

where n is the total number of states in the system.
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What is now the cross-entropy?
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We can repeat the same thought experiment with a slightly
different setup.

Assume we generate the sequence 1 using probability p;.
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But p; is unknown, and we only have some approximation g;.

Then our approximation of the probability of seeing the
sequence {1} is

Pi({ue}) = | [(a:)™

7
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he log of P, ({ir}) is the cross-entropy:

1
~log P ({ir}) = Z pilogg;
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If our guess of p; is correct, we have g; = p; and the cross-
entropy will be small.

Our estimated probability P, ({ix}) is large.
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Note that the cross-entropy H(p, q) is always greater than
H(p).
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It g; = p;, we get

H(p,q) = — » pilogg; = — ) pilogp; = H(p)

The cross-entropy is minimal.
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If our guess is wildly off, then the probability we estimate for
the sequence {i} will be very low.

In that case, H(p, q) will be very large.
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Let's take a simple example. Let's consider a dice that has
written 6 on all its faces.
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In that scenario, the only sequence we can generate is

(6,6,6,. . )
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If we believe that the dice is a normal one, we will assign a
small probability to the sequence we are seeing.

We get:

H(p,q) = _sz'log%’ = —log1/6 = log 6
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If instead, we know that only 6 can show up, we will use
g; = 0, wheni #£ 6

q; = 1, when? = 6.
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This gives us

H(p,q) = —» pilogg; =logl =0

The cross-entropy is much lower.
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For our deep learning problem, the cross-entropy can be
used as the loss function.
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Let's apply this to the classification problem.

Using softmax, we get some output probabilities .
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We use the notation y; and ¢, because this is the convention

for the output variable although it represents a probability in
this case.
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"he true probability in this case is often the one-hot vector.
"hat is, the vector

y; = 0,if1 £t

yi:].,ifi:t

where ¢ is a label and ¢t is the true label associated with the
input .
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If our DNN guesses ¢, the cross-entropy is

— ) yilogg); = —log,
1
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If 4, = 1, the DNN has correctly guessed the label and its
certainty is maximum.
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If 4, =~ 0, the loss function (cross-entropy) is very large.

This is what we should expect.
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