
CME 216, ME 343 - Winter 2021CME 216, ME 343 - Winter 2021

Eric Darve, ICMEEric Darve, ICME

1 / 29

The way we initialize the DNN weights is important.

2 / 29

There is a big danger in DNN.

When we stack several layers one after the other, we need to
make sure that the outputs at each layer do not keep
increasing.

3 / 29

Consider the linear transformation:

: activation at previous layer; : weights of current layer.

4 / 29

Assume that the activations are initially somewhat random.

For our simple analysis we assume that are independent
and identically distributed.

Their mean is 0 and their variance is assumed to be .

5 / 29

Assume that for simplicity. We have:

6 / 29

The variance of is .

7 / 29

If we consider the function tanh we see that it becomes very
!at when the argument is large.

8 / 29

If all weights are of order 1, the output will tend to be large
as increases.

This will push the argument tanh to large values, and saturate
tanh.

9 / 29

10 / 29

The consequence of this is that training becomes very
di"cult. The gradient becomes very small.

This is known as the vanishing gradient problem.vanishing gradient problem.

In addition, instabilities may creep in the model.

11 / 29

So it is important that we make sure that the outputs stay
nicely bounded.

This can be done by making sure that the variance of is 1
in our example.

12 / 29

This idea has led to di#erent techniques to initialize the
weights of DNNs.

A well-known one is the Glorot-Bengio initialization which
considers the number of incoming and outgoing edges in the
model (in our case it was) and de$nes

13 / 29

Then the weights are initialized with variance

In our analysis this makes sure that the output of each layer
stays of order 1.

14 / 29

Many variants have been proposed for this idea.

See the TF documentation on initializers.

15 / 29

https://www.tensorflow.org/api_docs/python/tf/keras/initializers

Some of the common choices are for di#erent activation
functions:

InitializationInitialization Choice of activation functionChoice of activation function VarianceVariance

Glorot default, tanh, logistic, softmax 1/

He ReLU 2/

LeCun SELU 1/

16 / 29

We can test this in our simple example.

Since the solution is , we expect the weights to be
order 1 (slope 1).

17 / 29

We will use a large network with many coe"cients in this
example.

We have 4 hidden layers of size 128.

Let's initialize with large weights using a random uniform
initialization:

18 / 29

To initialize each layer we use

m_val = 10
kernel_initializer=tf.random_uniform_initializer(minval=-m_val, maxval=m_val)
bias_initializer=tf.random_uniform_initializer(minval=-m_val, maxval=m_val)

19 / 29

This corresponds to a random uniform initialization using the
interval .

20 / 29

The results are absolutely awful.

21 / 29

22 / 29

This is because we start from a very oscillatory initial guess
(large weights).

The training brings it closer to the data but because our
model is under-constrained (DNN is too complex for this
simple task) we fail to converge to anything reasonable.

23 / 29

Let's reduce the interval to .

24 / 29

And then to .

25 / 29

The scheme to initialize the DNN can have a strong
regularizing e#ect.

26 / 29

This is because for overparameterized networks, we may
have many local minima.

The initialization scheme will lead the network to di#erent
local minima.

27 / 29

If we start with small weights, we will tend to end up with a
solution with small weights, which means it will be smoother.

28 / 29

If we start with large weights, then all bets are o#. We may
get a very oscillatory solution.

29 / 29

