
CME 216, ME 343 - Spring 2020CME 216, ME 343 - Spring 2020

Eric Darve, ICMEEric Darve, ICME

1 / 13

We have seen in the previous lecture how the optimal
learning rate could be computed using the Hessian.

In practice, the quadratic approximate we used is not exact
and the Hessian is very di!cult to estimate.

2 / 13

Instead, we are going to "nd a good learning rate empirically.

3 / 13

For this, we need to be able to vary the learning rate in a
speci"c manner.

We use a formula where the rate is in increased geometrically
at every epoch:

rate = initial_rate * growth_rate^(epoch / growth_step)

4 / 13

This is implemented in TF using a callback .

We "rst implement our formula for the learning rate.

5 / 13

def lr_exponential_decay(epoch, lr):

 growth_rate = final_learning_rate / initial_learning_rate

 lr_ = initial_learning_rate * growth_rate**(epoch / (n_epochs-1.))

 metric_lr[epoch] = lr_

 return lr_

6 / 13

metric_lr[epoch] is used to store the value of the learning
rate for analysis later on.

7 / 13

Then we create a learning rate callback in Keras:

lr_callback = keras.callbacks.LearningRateScheduler(lr_exponential_decay)

8 / 13

Finally, we register the callback function:

history = dnn.fit(x_t, y_t,

 validation_data=(x_v,y_v),

 epochs=n_epochs,

 batch_size=int(x_t.size),

 callbacks = [lr_callback])

9 / 13

We plot the decay of the loss and the learning rate

10 / 13

We see that the loss decays rapidly around epoch 6 which
corresponds to a learning rate of 0.1.

11 / 13

We can restart this analysis with a smaller range for the
learning rate interval.

12 / 13

Again the loss decays rapidly around epoch 4, which
corresponds to a learning rate of 0.3.

So the "nal learning rate we choose is around 0.3.

13 / 13

