CME 216, ME 343 - Winter 2021
Eric Darve, ICME

€ Stanford University

1724



As we have mentioned before, training a neural network is a
difficult.

In some cases, we may get a DNN that fits the training set

very well but still have very poor accuracy on the validation
set.

2/ 24



This problem is also known as generalization error. That is we
do well on the data we are given but fail on unseen data (the
"generalization").

3/24



This behavior is typically caused when the neural network
tends to oscillate wildly as we move away from the training
points.

This problem is called "overfitting".

4/ 24



This is similar to the problem of fitting a polynomial of order
n to points (x;,v;), 1 < 1 < n, where x; are uniformly
distributed.

The polynomial will go through each (;, y;) but will have
wild oscillations in between.

5/24



DNNSs suffer from similar problems. There are different
techniques that can mitigate overfitting:

e Early training termination using the validation error
e Controlling the size of the DNN
e Regularization

6/ 24



Let us consider the following example:

1.001 o training

07541 — prediction

0.50 A
0.25 A
0.00 A
—0.25 -
—0.50 -

—0.75 -

—1.00 A

-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00

7124



For reference, the DNN we use is

e fully connected
e tanh activation
e 1 hidden layer with 8 nodes

8/ 24



The exact solution is just the line y = .

Our answer is very accurate.

9724



Let's add 10% of noise to the training data.

What do we get?

10/ 24



he DNN is now making a seriously wrong prediction.

11724



Let's stop the convergence early after 20 steps.

10—1_

10—2_

10—3_

Training and validation losses

10

15

20

25

1.0 A

0.5 A

0.0 A

—0.5 4

—1.0 A

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

12724



The validation error is small initially.

But as we keep iterating, the training error decreases (the
DNN gets closer to the data) but the validation error keeps
INncreasing.

13724



Training and validation losses

1071 -
10—3_ Lﬂk_ -
10—5_
10—7_
1074 —— Joss
- Validation
0 50 100 150 200 250 300
epoch

14/ 24



This is because our initial guess for our DNN is quite good in
this case.

So our initial choice gives us good accuracy.

15724



But as we train and get closer to the data, our model
becomes less accurate.

This is because of the noise we added to the data.

16/ 24



Eventually, we fit the data perfectly:

@ training
— prediction

1.5 A

1.0 A

0.5 -

0.0 -

—0.5 A

—1.0 -

-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00

17124



But our error on the validation set is very high.

This is because the true solution is y = .

18724



Training and validation losses

10—1_
10—3_ kﬂ&, P
10—5_
10—7_
1074 —— Joss
- validation
0 50 100 150 200 250 300
epoch

19/ 24



The data cannot be fully trusted in this example.

We are overfitting.

20/ 24



But if we look at the validation error, there is a minimum.

The solution is quite accurate at that point.

21124



In this run, the minimum is around 30.

100_

10—1_

10—2_

10—3_

Training and validation losses

.
|

loss
validation

20

40

60
epoch

80

100

120

1.00 A

0.75 A

0.50 A

0.25 A

0.00 -

—0.25 A

—0.50 A

—0.75 A

—1.00 A

@ training
—— prediction

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50

0.75

1.00

22 /24



So a simple learning strategy is to train until the validation
error starts increasing.

Then we stop the iteration, and use the solution we have
obtained at that point.

23 /24



Solution after 20 steps:

1.0 1

0.5 -

0.0 -

—0.5 A

—1.0 -

@ training
— prediction

-1.00 -0.75 -0.50 -0.25 0.00

0.25

0.50

0.75

1.00

24 1 24



