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As we have mentioned before, training a neural network is a
difficult.

In some cases, we may get a DNN that fits the training set

very well but still have very poor accuracy on the validation
set.
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This problem is also known as generalization error. That is we
do well on the data we are given but fail on unseen data (the
"generalization").
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This behavior is typically caused when the neural network
tends to oscillate wildly as we move away from the training
points.

This problem is called "overfitting".
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This is similar to the problem of fitting a polynomial of order
n to points (x;,v;), 1 < 1 < n, where x; are uniformly
distributed.

The polynomial will go through each (;, y;) but will have
wild oscillations in between.
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DNNSs suffer from similar problems. There are different
techniques that can mitigate overfitting:

e Early training termination using the validation error
e Controlling the size of the DNN
e Regularization
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Let us consider the following example:
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For reference, the DNN we use is

e fully connected
e tanh activation
e 1 hidden layer with 8 nodes
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The exact solution is just the line y = .

Our answer is very accurate.
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Let's add 10% of noise to the training data.

What do we get?
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he DNN is now making a seriously wrong prediction.
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Let's stop the convergence early after 20 steps.
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The validation error is small initially.

But as we keep iterating, the training error decreases (the
DNN gets closer to the data) but the validation error keeps
INncreasing.
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Training and validation losses
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This is because our initial guess for our DNN is quite good in
this case.

So our initial choice gives us good accuracy.
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But as we train and get closer to the data, our model
becomes less accurate.

This is because of the noise we added to the data.
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Eventually, we fit the data perfectly:
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But our error on the validation set is very high.

This is because the true solution is y = .
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Training and validation losses
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The data cannot be fully trusted in this example.

We are overfitting.
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But if we look at the validation error, there is a minimum.

The solution is quite accurate at that point.
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In this run, the minimum is around 30.
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So a simple learning strategy is to train until the validation
error starts increasing.

Then we stop the iteration, and use the solution we have
obtained at that point.
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Solution after 20 steps:
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