CME 216, ME 343 - Spring 2020 Eric Darve, ICME

Let us review the loss functions that are available in TensorFlow.

See Keras loss documentation for the complete list.

BinaryCrossentropy

Cross entropy when only two labels (0 and 1) are possible.

CategoricalCrossentropy

Cross entropy with more than 2 labels.

This is the case we explained.

Hinge

This is a variant which applies when the labels are either -1 or 1.

The formula is

loss =
$$\max(1-y_{\text{true}}\ y_{\text{pred}},0)$$

where $y_{
m true}$ and $y_{
m pred}$ are the labels.

CategoricalHinge

This is the hinge loss for the case where more than 2 labels are possible.

The formula is

$$loss = \max(1 - pos + neg, 0)$$

where:

$$\begin{aligned} &\text{pos} = \sum_i [y_{\text{true}}]_i \ [y_{\text{pred}}]_i \\ &\text{neg} = \max_i ((1 - [y_{\text{true}}]_i)[y_{\text{pred}}]_i) \end{aligned}$$

This applies when y is a probability.

Let's assume that $y_{
m true}$ is a one-hot vector.

Then

pos =
$$\sum_i [y_{ ext{true}}]_i \ [y_{ ext{pred}}]_i = [y_{ ext{pred}}]_t$$

is the value of $y_{
m pred}$ for the true label t.

 $\mathsf{neg} = \max_{i
eq t} [y_{\mathsf{pred}}]_i$

is the maximum of $y_{
m pred}$ for all labels different from the true one t.

So, using compact notations

loss =
$$\max(1-[y_{\mathrm{pred}}]_t+\max_i[y_{\mathrm{pred}}]_{i\neq t},0)$$

For a good model:

$$[y_{ ext{pred}}]_t pprox 1$$

$$\max_i [y_{ ext{pred}}]_{i
eq t} \ll 1$$

So the loss will be small.

Note that the <u>documentation</u> for CategoricalHinge has a rather mistifying error.

Can you find it?

The formula for neg and pos is not correct for some reason.

Fortunately, the <u>code</u> is correct.