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Support vector machine (SVM) is one of the simplest methods
for classi!cation.

It forms a stepping block to neural networks and deep
learning.
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SVM is a method for binary classi!cation.

That is, we are given a point , and we want to predict
a label with possible values  or .
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In SVM, the space  of possible  is subdivided into 2 half-
space by a hyperplane: a line in 2D or a plane in 3D.

On one side of the hyperplane, the label is  and is  on the
other.
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 labels from  is simply .

The  labels are in the top left and the  in the bottom
right.
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However, if the training data that we are given are only the
colored dots, we cannot exactly determine the separating line

.

So instead, based on the observed data (the dots), we ask
what the best hyperplane we can !nd is.
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The hyperplane is de!ned by a normal vector  and a bias :
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Once the hyperplane is found, the classi!cation is given as
follows.

If  then we predict that the label is , otherwise
the label is .
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In SVM, the best hyperplane is de!ned as the one that has
the largest margin,margin, that is the one which the points are the
farthest from.

This makes the classi!er more robust and accurate.
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In the !gure below, the "exact" solution is

(the solid blue line), but this is unknown to us.

Instead, we observe only the colored dots. Based on this, the
best line of separation is the black solid line in the middle.
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The goal in SVM is to determine the equation of the black
solid line such that the distance  is maximum.

By de!nition, no training points (the colored dots) can reside
between the dashed lines. The black solid line must be
equidistant from the two dashed lines.

13 / 32



Let's now see how this can be formulated mathematically.
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The !rst step is calculating the distance of a point to the
separating hyperplane (black solid line above).

This hyperplane will be de!ned by the equation 

: vector in 

: scalar
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Take a point  not on the hyperplane.

How far is it from the hyperplane?

You can prove that the distance  is
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We then need to search for  that makes  as large as
possible.
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The division by  indicates that there is a scaling invariance
in this problem.

We can multiply  and  by any constant  and the
hyperplane/classi!er is the same.
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is simpli!ed to
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To normalize, we choose  and  such that

 for all , and
there must be some  for which

This happens for the point(s) that is closest to the plane.
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The condition  may look strange.

But, recall that:

when the label , we expect  and
when , we expect 

So at least in terms of the signs, this equation makes sense.
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Let's denote by  the distance of the point closestclosest to the
hyperplane. Then:
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With our normalization this becomes simple:

since  for the nearest point.
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We search for  such that  is maximum.

Equivalently  minimum with .
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To solve this problem, we can re-write it as a quadratic
programming problem.

We don't need to know what this is in detail but what matters
is that there are e"cient methods to solve this type of
problem.

26 / 32



Since we want to maximize the distance of the nearest point 
, we minimize .
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We search for

subject to the constraint
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For the optimal solution, there must be at least one  for
which

These s are called support vectors.support vectors.
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See Section 5.7.2 in Deep Learning
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https://www.deeplearningbook.org/
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In the previous !gure, the red and blue dots lying on the
dashed lines are the support vectors.

The black solid line is our best guess  where  is
a point in the plane .

32 / 32


