# CME 216, ME 343 - Spring 2020 Eric Darve, ICME



# Supervised learning

There are broadly speaking two main tasks in machine learning that we will be concerned about:

- 1. classification and
- 2. regression.

For more information, please read section 5.1 in <u>Deep</u> Learning.



# The first one is **classification**.

In this problem, we assume that for each point

$$x=(x_1,\ldots,x_d)$$

we need to assign or predict a label or category, which is typically represented by an integer.

It may represent for example the type of object represented in an image, a cat, a dog, or a car.

In engineering, x may represent the result of some experimental measurements for a bridge for example.

The label may represent whether we believe there is a fracture or damage to the structure: +1 if true and -1 if false.

Or similarly,  $x = (x_1, \ldots, x_T)$  may be a time-resolved signal, for example the vibrations of a mechanical part.

The label may represent a mechanical failure: +1 if a failure is detected, -1 otherwise.

The second one is **regression**.

In that case, we may be interested in some function

$$u(x)\in \mathbb{R}$$

which is real-valued.

It may be a scalar quantity like the pressure, a vector, like the velocity, or a tensor, like the stress, or strain in a solid.

Regression is more common than classification in engineering.

We previously gave the example of linear regression.

# We are going to start with the problem of classification for simplicity.

### Decision function



# In the previous figure, the points on the top left in red have a label +1 and the ones in the bottom right in blue have a label -1.

In this case, 
$$x=(x_1,x_2)$$
 is a vector in  $\mathbb{R}^2$ 

This is an example of a **supervised** learning task.

That is we are given some data points  $x_i$  in 2D along with their labels, +1 or -1.

**Unsupervised** learning is concerned with a different set of tasks.

For example, given a set of points  $x_i$  (without any label), unsupervised learning may attempt to cluster these points into sets or clusters that are "well-separated" from each other.

See Section 5.1.3 in <u>Deep Learning</u> for more details about supervised vs unsupervised learning.