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Finally, we cover custom layers and models. This is done
using Python subclassing (more on this later).

This is the most general technique to build DNNs.
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The Sequential API and the Functional API are declarative.

A declarative programming style is one where the user
expresses the logic of a computation without describing its
control !ow.

Said otherwise, the user describes what the object should do
but not directly how.
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The subclassing method is a type of imperative
programming.

That is, this is an approach where the user describes how the
program operates.
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Imperative example.Imperative example.

You enter a restaurant and you say:

"I see that this table in the corner is empty. My wife and I are
going to take it."
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Declarative example.Declarative example.

You enter a restaurant and you say:

"A table for two, please."
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The subclassing approach uses the imperative style of
programming.

More information about the declarative (or symbolic) and
imperative APIs in TF.
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https://blog.tensorflow.org/2019/01/what-are-symbolic-and-imperative-apis.html


Subclassing requires using Python inheritance.

You do not really need to know the details of this.

If you know how to use the proper syntax, it is good enough
for most situations.

But let us do a little more and explain what subclassing is and
how it works in Python.
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Inheritance is a mechanism where new classes are derived
(or built on) previous classes.

The class from which a class inherits is called the parent class
or superclass.superclass.

A class that inherits from a superclass is called a subclass,subclass,
also called heir class or child class.
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In Keras, you can subclass tf.keras.layers.Layer and
tf.keras.Model.

For simplicity, we will just look at subclassing tf.keras.Model.
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Here is the basic syntax:

class MyModel(keras.Model):
def __init__(self, **kwargs):
super().__init__(**kwargs) # handles standard args (e.g., name)
[...]

def call(self, input_):
[...]
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In __init__() we will set up all the data-structures (layers)
that are needed by our model.

call() de"nes the sequence of computations the DNN
should perform.
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Python uses the method __init__ to initialize the state of a
new object of that class.

This is a constructor.

It is called when a new object of that class is created.
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The class MyModel derives from the class keras.Model.

Derived classes in Python inherit the methods and class
attributes from their parent classes.

In our case, MyModel inherits from keras.Model.
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Because we are subclassing, all the methods from
keras.Model are available.

In particular, we can call the methods compile, fit, predict,
and evaluate from keras.Model.
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class MyModel(keras.Model):
def __init__(self, **kwargs):
super().__init__(**kwargs) # handles standard args (e.g., name)
[...]

def call(self, input_):
[...]
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super().__init__(**kwargs) allows calling the __init__
method of the parent class.

This ensures that the constructor of the parent class (and
potentially all the relevant ancestor classes) is called.
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super() is somewhat complicated to fully explain in this
lecture.

To simplify the discuss, we will say that super() is referring to
the parent class.
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super() is closely connected to the concept of the method
resolution order.

See the __mro__ attribute.

super() is great to call a function de"ned by a parent class.

But it is most useful in cases of multiple inheritance.
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https://docs.python.org/3/glossary.html#term-method-resolution-order
https://docs.python.org/3.8/library/stdtypes.html?highlight=__mro__#class.__mro__


See this demo Python code for details and examples using
super().
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https://github.com/EricDarve/me343-cme216-winter-2021/blob/main/Code/Inheritance%20demo.ipynb


For more information about super() see the super() Python
doc and this blog by Hettinger.
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https://docs.python.org/3/library/functions.html#super
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/


__init__()

def __init__(self, **kwargs):
super().__init__(**kwargs) # handles standard args (e.g., name)
self.hidden1 = keras.layers.Dense(4, activation="relu")
self.hidden2 = keras.layers.Dense(4, activation="relu")
self.hidden3 = keras.layers.Dense(4, activation="relu")
self.out = keras.layers.Dense(1, activation="linear")
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As we explained above, we "rst call super().__init__() so
that the parent classes are initialized.

Then we build the three hidden layers and the output
self.out.
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Note how, although we are de"ning 3 hidden layers and 1
output layer, we are not specifying how they are going to be
used.

This will be done in call().
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Compared to the previous case, we changed the activation
function to relu.
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call()

def call(self, input_):
hidden1 = self.hidden1(input_)
hidden2 = self.hidden2(hidden1)
hidden3 = self.hidden3(hidden2)
concat = layers.Concatenate()([input_, hidden3])
return self.out(concat)
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call then de"nes the actual sequence of calculation to
perform.

self.hidden1(input_) uses

keras.layers.Dense(4, activation="relu")

to calculate numerical values that are stored in hidden1.
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concat does not need to be part of the class since it is
computed from input_ and hidden3.
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We note that since we only de"ne the layers and the
sequence of operations, we have left a few things unde"ned.

For example, the size of input_ is not de"ned yet.

The shape of the input is de"ned later when calling fit.

29 / 40



The rest of the code is the same as what we had before.

model.compile(loss='mse', optimizer=sgd, metrics=['mse','mae'])
history = model.fit(X_train, y_train, epochs=n_epochs,
validation_data=(X_valid, y_valid))
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Error
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The relu activation is doing a little worse in this case.
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For more details on the di#erent APIs and subclassing, please
see these two videos from the TF team.

Part 1

Part 2
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https://www.youtube.com/watch?v=UYRBHFAvLSs
https://www.youtube.com/watch?v=uhzGTijaw8A


Finally, we show a di#erent example where we use a di#erent
input.

The "rst observation is that the function is even.

So we could use as input .
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But we can use more inputs as well.

Let's try

These are the "rst even Chebyshev polynomials of order 2
and 4.
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Let us compare all these models.
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relu has the worst performance.

multi X is relatively more e$cient as it exhibits an error
similar to seq DNN but uses half of the training data.
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Note how di$cult it is to train these models to get high
accuracy.

The convergence is rather slow.
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