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We start our discussion of deep neural networks with the
basic unit at the core of the model:

The Perceptron
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The perceptron was invented in 1957 by Frank Rosenblatt.

We will see that it is quite similar to the basic formula used
for SVM.
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A perceptron is a function that takes as input a vector x and
outputs a real number.

Its formula is given by

huos(2) = $(w'z + b)
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X are the input variables.

This is the data used to make our prediction.
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w and b are parameters to optimize.

e w is called the weight vector / matrix.
e bis called the bias. It shifts w! z by a constant.
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There are many different choices for ¢ but most choices are
associated with the idea of neuron activation and threshold
activation.
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e Activation: the neuron is either on or off.
e Threshold: the neuron is off below a certain value and on
above.
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Mathematically, ¢(z) is

e close to 0 when z < 0, and
e increases rapidly to 1 when z > 0.
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he simplest example is the heaviside function.
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heaviside function
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This function has some limitations that make it unsuitable for
our optimization algorithmes.

In particular, the slope is always 0.
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Researchers have tried a variety of activation functions ¢ with
better properties.

Some common choices are.
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e sigmoid and tanh are very similar up to scaling and shifting
e relu has zero derivative when & < 0 which can cause some
numerical problems for certain optimization algorithmes.
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Mathematical definitions

e heaviside(x): 0if z < 0; 1 otherwise.

e sigmoid(xz) = o(x) = 1/(1 + exp(—=x))
e tanh(x) = 20(2z) — 1

e ReLU(x) = max(0, x)
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Optimization

How can we optimize w and b given some data?
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We first need to define a loss function

m

L(w,b) = Y (3 — ¢p(w'x; + b))’

1=1
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We can minimize the error by using a gradient descent
method:

OL OL
A’UJ——Cka—w, Ab——a%

a = learning rate; Aw and Ab are increments in w and b.
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Notation:

® ;. trainin%data
o . = ¢(w" x; + b): prediction using perceptron
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m m

L(w,b) = Z(yz' — ¢p(w' z; + b)) = Z(yz' —9;)°

Derivative with respect to w:

OL LA
30 2 D (0 —v) ¢'(w'zi +b) z;
w i—1
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™m

L(w,b) = Y (3 — ¢p(w'x; + b))’

1=1

Derivative with respect to b:

i "(w'z; + b)
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