Dot Product and Vector Norms#

Dot Product#

For vectors \(x, y \in \mathbb{R}^n\), the dot product (also called the inner product in this context) is defined as

\[ x^T y = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n. \]

For vectors \(x, y \in \mathbb{C}^n\), we use the conjugate transpose:

\[ x^H y = \overline{x}_1 y_1 + \overline{x}_2 y_2 + \cdots + \overline{x}_n y_n, \]

where \(\overline{x}_i\) denotes the complex conjugate of \(x_i\).

The computational cost of computing a dot product is \(O(n)\).


Orthogonality#

Two vectors \(x\) and \(y\) are orthogonal if

\[ x^T y = 0 \]

(in the complex case, \(x^H y = 0\)).

This definition naturally extends to subspaces.


Orthogonal Complements#

For a subspace \(S \subset \mathbb{R}^n\), the orthogonal complement \(S^\perp\) is defined as:

\[ S^\perp = \{ y \in \mathbb{R}^n \;|\; \forall x \in S,\; x^T y = 0 \}. \]

Key properties:

  • \(S^\perp\) is itself a subspace of \(\mathbb{R}^n\).

  • Any vector \(v \in \mathbb{R}^n\) can be uniquely written as the sum of a vector in \(S\) and a vector in \(S^\perp\).

  • The dimensions satisfy:

\[ \dim(S) + \dim(S^\perp) = n. \]

Vector Norms#

The dot product allows us to define the Euclidean norm (or 2-norm) of a vector \(x\):

\[ \|x\|_2 = \sqrt{x^T x} = \left( \sum_{i=1}^n x_i^2 \right)^{1/2}. \]

General Definition of a Norm#

A norm is a function \(\|\cdot\|\) mapping vectors to non-negative real numbers that satisfies:

  1. Positive definiteness: \(\|x\| = 0 \iff x = 0\).

  2. Homogeneity: \(\|\alpha x\| = |\alpha| \, \|x\|\) for all scalars \(\alpha\).

  3. Triangle inequality: \(\|x + y\| \leq \|x\| + \|y\|\).


Common Vector Norms#

  1. 1-norm (Manhattan norm):

\[ \|x\|_1 = \sum_{i=1}^n |x_i|. \]
  1. 2-norm (Euclidean norm):

\[ \|x\|_2 = \left( \sum_{i=1}^n x_i^2 \right)^{1/2} = \sqrt{x^T x}. \]
  1. Infinity norm (max norm):

\[ \|x\|_\infty = \max_{1 \le i \le n} |x_i|. \]
  1. p-norm (for \(p > 1\)):

\[ \|x\|_p = \left( \sum_{i=1}^n |x_i|^p \right)^{1/p}. \]

Convention: In this book, \(\|x\|\) means \(\|x\|_2\) unless otherwise stated.


Inequalities Between Norms#

For any \(x \in \mathbb{R}^n\):

\[ \|x\|_2 \le \|x\|_1 \le \sqrt{n} \, \|x\|_2, \]
\[ \|x\|_\infty \le \|x\|_2 \le \sqrt{n} \, \|x\|_\infty, \]
\[ \|x\|_\infty \le \|x\|_1 \le n \, \|x\|_\infty. \]

These follow from the Cauchy–Schwarz inequality (see below) and basic properties of maxima and sums.


Geometric Interpretation#

The unit ball of a norm \(\|\cdot\|\) is the set:

\[ \{ x \in \mathbb{R}^n \;|\; \|x\| = 1 \}. \]
  • For the 2-norm, the unit ball is a sphere (circle in \(\mathbb{R}^2\)).

  • For the 1-norm, the unit ball in \(\mathbb{R}^2\) is a diamond shape.

  • For the infinity norm, the unit ball is a square in \(\mathbb{R}^2\).

As \(p \to \infty\), the \(p\)-norm unit ball transitions from “diamond-like” (near \(p=1\)) to “square-like” (as \(p \to \infty\)).


Cauchy–Schwarz and Hölder Inequalities#

Hölder’s inequality:
For \(x, y \in \mathbb{R}^n\) and \(p, q > 0\) such that \(\frac{1}{p} + \frac{1}{q} = 1\),

\[ |x^T y| \le \|x\|_p \, \|y\|_q. \]

Cauchy–Schwarz inequality:
Special case \(p = q = 2\):

\[ |x^T y| \le \|x\|_2 \, \|y\|_2. \]

Application: Pythagorean Theorem#

If \(x, y \in \mathbb{R}^n\) are orthogonal (\(x^T y = 0\)), then:

\[ \|x + y\|_2^2 = \|x\|_2^2 + \|y\|_2^2. \]

This follows immediately from expanding \(\|x+y\|_2^2\) using the dot product definition.


Summary Table:

Norm

Formula

Unit Ball Shape (\(\mathbb{R}^2\))

1-norm

\(\sum_{i=1}^n \lvert x_i\rvert\)

Diamond

2-norm

\((\sum_{i=1}^n x_i^2)^{1/2}\)

Circle

Infinity-norm

\(\max_i \lvert x_i\rvert\)

Square

p-norm

\((\sum_{i=1}^n \lvert x_i\rvert^p)^{1/p}\)

Smooth transition from diamond to square as \(p\) increases